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1. INTRODUCTION 
 

Is thermodynamics true of self-gravitating systems?  Or better put, does equilibrium 
statistical mechanics, the theory describing the microscopic basis of thermal phenomena, 
apply when the dominant coupling in a system is via (classical) gravitation?  This 
question is the subject of increasing interest in astrophysics, but it is rarely pursued from 
a foundational perspective.1  From this standpoint, the issue is not only fascinating in its 
own right, but it is an important prism through which to view other foundational projects 
in statistical mechanics. By considering it, we increase our understanding of the 
conditions under which a thermodynamic description of the world can emerge. 

To motivate the question, notice that the long-range nature of the gravitational force 
causes many prima facie problems for a statistical mechanical account of a system.  
Unlike the equally infinite Coulomb force, the gravitational force does not saturate.  In 
systems wherein Coulomb forces dominate, the positive and negative charges effectively 
cancel out at certain scales, e.g., in plasmas on scales larger than Debye spheres.  At such 
scales the net interaction energy effectively vanishes, and this allows us to treat such 
systems as if they consist of many statistically independent subsystems.  Such an 
assumption is at the heart of statistical mechanics.  As a result of this non-saturation and 
related features, self-gravitating systems face many difficulties.  

These difficulties are often dubbed the "paradoxes" of gravitational thermodynamics.  
Here is a quick taste of the difficulties.  First, classical thermodynamics and statistical 
mechanics apply to systems in thermal equilibrium, but it's certainly not obvious what the 
equilibrium state of a self-gravitating system is.  If it's a "singular" point, as many think, 
can such a monstrosity function as equilibrium?  Second, in statistical thermodynamics 
the basic parameters of a state are extensive, yet self-gravitating systems typically cannot 
localize their gravitational potential energy enough to be considered extensive.  The 
system's features are shaped by the overall bulk properties of the universe, not just near 
neighbors.  Third, statistical mechanics requires that one be able to calculate the partition 
function of the relevant ensemble, but in self-gravitating systems the partition function 
can diverge.  Fourth, in classical thermodynamics the specific heat is always positive, but 
in the gravitational case it is said to be frequently negative.  By removing energy from a 
self-gravitating system, you can heat it up! 
                                                
1 For an entry to this literature, see the introductions to the collections by Campa et al 2008 and Dauxois et 
al 2002, in addition to Heggie and Hut 2003, Saslaw 2000 and Padmanabhan 1990.  
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These puzzles and others attract attention in astrophysics.  Or rather, an applied version 
of these worries appears in this field. The reason it appears there is that various stellar 
systems are well modeled by the classical N-body gravitational equation, e.g., globular 
star clusters (N=105-106), galaxies (N=102-104), and of course, planetary systems.  
Because solving the million-body problem is analytically intractable, physicists naturally 
turn to statistical mechanics as a way of attacking these systems.  The question becomes 
(roughly): if we think of the stars as the "particles" in a box of gas, interacting primarily 
via gravitation, do they execute behavior consistent with statistical mechanical 
principles? 

To the extent that physicists have dealt with these paradoxes, the community divides over 
the fate of gravitational statistical mechanics. The conventional wisdom is that these 
paradoxes make statistical mechanics inapplicable.  In its place various recipes and 
techniques remain, but the foundations from Maxwell, Boltzmann and Gibbs are judged 
inapplicable.  By contrast, others react against the prevailing opinion and try to show that 
statistical mechanics does apply.  

On the "nay" side, here is the chemist Rowlinson expressing a common sentiment: 

"[Thermodynamics] is essentially a human science; it started with steam 
engines and went on to describe many physical and chemical systems whose 
size is of the order of a metre. Its laws are not truly a theory but a highly 
condensed and abstract summary of our experience of how such systems 
behave. We have, therefore, no right to expect them to apply to other quite 
different systems, whether extremely large or extremely small. They clearly are 
inapplicable to the solar system or to galaxies. Here gravity is the dominant 
force; there is no equilibrium, the energy is no longer proportional to the 
amount of material, and so there are no extensive functions. Clausius's famous 
remark that the energy of the universe is constant but its entropy is increasing 
to a maximum is derived from the behaviour of a closed adiabatic system of 
constant volume. The universe is neither closed in any classical sense, nor of 
constant volume. Clearly classical thermodynamics is not a useful branch of 
science in cosmology; we have extrapolated too far from its human-sized 
origins." (1993, 873) 

Hut 1997 writes that there are "fundamental problems that prevent a full thermodynamic 
treatment of a self-gravitating system of point particles" and that "the traditional road to 
equilibrium thermodynamics is blocked" (41).  Regarding application, one prominent 
textbook explicitly raises the contrast: 

The question we now have to address is, what determines the particular 
configuration to which a given stellar system settles.  Two classes of 
explanation are in principle possible: (i) The configuration actually adopted is 
favored by some fundamental physical principle in the same way that the 
velocity distribution of an ideal gas always relaxes to the Maxwell-Boltzmann 
distribution.  (ii) The present configuration of the galaxy is simply a reflection 
of the particular initial conditions that gave rise to the galaxy's formation, in the 
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same way that the shape of a particular stone in a field is due to particular 
circumstances rather than any general physical principle.  (Binney and 
Tremaine 1987, 266) 

By "fundamental physical principle" Binney and Tremaine essentially mean statistical 
mechanics.  Because of a result we'll consider later, they come down in favor of (ii).  
Many others working in this area also appeal to one "paradox" or other as evidence that 
the core principles of statistical mechanics break down in self-gravitating systems.  The 
claim that self-gravitating systems have no equilibrium, in particular, is the norm rather 
than the exception. 

 Against this opinion, one reads that 

"…statistical mechanics of gravitating systems is a controversial subject.  
However, our modern understanding of statistical mechanics and 
thermodynamics does handle gravitational interactions rigorously with 
complete satisfaction" Kiessling 1999, 545 

"on the contrary …[the] usual tools and ideas of statistical mechanics do apply 
to such systems, both at equilibrium and out of equilibrium" (Bouchet and 
Barre 2006, 19) 

"not all was well with these three arguments [three of the above problems]".  
Saslaw 2000, 301 

These authors and others believe that statistical mechanics works for self-gravitating 
systems.  None feel that the problems mentioned spell the end for statistical mechanical 
application.  However, not all the answers on the "yea" side recommend the same 
answers to our puzzles.  The motley character of their answers shouldn't be surprising—
given the motley character of the foundations of statistical mechanics itself.  With so 
many competing programs, there are many starting points and non-overlapping "core" 
principles in play. 

No one denies that many statistical mechanical techniques can be applied to stellar 
systems. But are these merely residual mathematical tools with the core physical 
principles left behind?  Answering this question relies on an antecedent division of 
statistical mechanical core and non-core principles, and this is bound to be controversial. 
The dispute as I have framed it so far can degenerate into a quibble about semantics, but 
there is much of interest here besides whether a set of techniques gets dubbed 
"equilibrium statistical mechanics".  Very important physical principles are challenged by 
self-gravitating systems, and it's of interest how to respond to these challenges—
regardless of how we categorize these principles.   

While our discussion will have ramifications for the application problem, our primary 
focus will be on the logical problem of compatibility.  Suppose (contrary to fact) that no 
actual stellar systems are good examples of classical N-body gravitation problems, and 
hence, that no actual system tests our question. Still the question exists of whether self-
gravitating systems obey statistical thermodynamics.   
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As we'll see, discussion of this question will embroil us in many other foundational 
questions of statistical mechanics: the meaning of equilibrium, the direction of time, our 
understanding of phase transitions, the (non)equivalence of Gibbsian ensembles, and the 
use of the thermodynamic limit.  Put together, these issues promise to teach us an awful 
lot about the foundations of statistical mechanics and the emergence of thermodynamics. 

In what follows I introduce the so-called "paradoxes" of gravitational statistical 
mechanics with an eye on foundational matters.  Many papers treat some small subset of 
the problems mentioned.  It will be useful to have all the so-called "paradoxes" in one 
place, in order to compare them and see how they relate to one another.  The paper's 
primary goal is to advertise the problems for further study—and hence it's longer on 
questions than on answers.  However, where possible in such a short space I do hope to 
make some progress on the answers. 

 

2. THE SYSTEM 
 

The system we will consider, unless otherwise noted, is one composed of N particles, 
each of equal mass m, evolving in three-dimensional Euclidean space and interacting via 
a potential V.  Such a system's Hamiltonian is 
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where c is a coupling parameter and (qi,pi) are the canonical coordinates of the i-th 
particle.  Long-range forces are typically associated with two body potentials V(r) = 1/rs, 
where s is less than or equal to the spatial dimensionality of the system.  In the case of 
self-gravitation, s=1, V(r)=1/r, and c=-Gm2, so (1) becomes  
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With those substitutions (1) becomes Newton's famous N-body problem in gravitation 
theory.  Although our emphasis will be on gravity, gravity is not necessary for many of 
the puzzles that follow.  There are non-gravitational systems that display some of these 
behaviors and raise some of the same questions, e.g., so-called geophysical fluid 
dynamical models (s=0), some non-neutral plasmas (s=1), dipolar ferroelectrics and 
ferromagnetics (s=3), as well as some spin systems and toy models.  Interestingly, many 
of the peculiar physical properties found in large stellar systems are also found in very 
tiny systems like nanoclusters.  This is no accident.  If we consider a system "small" if its 
spatial extension is smaller than the range of its dominant interaction, then a self-
gravitating system is small too.  In any case, the astrophysical applications of (1) make 
the gravitational case the most significant. 
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3. DIVERGENCES 
  
Let's begin by arguing that one common problem for self-gravitating systems is in fact a 
pseudo-problem—or at least, if it is a problem, it's one common to short-range systems 
too.  The problem is that self-gravitating systems have what might be called infrared and 
ultraviolent divergences.  

The infrared divergence arises from the fact that the gravitational potential r-1 has infinite 
range.  Since there is no shielding, strictly speaking the microcanonical density of states 
diverges.  The density of states g(E) is given by 
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where E is the fixed energy, H the Hamiltonian, and N the number of systems.  The above 
integral diverges if the range of spatial integrations is infinite.  Indeed, the configuration 
space of an N-body self-gravitating system diverges badly:   
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(Cipriani and Pettini 2005).  Since the Gibbs entropy S(E) is essentially the logarithm of 
g(E), this problem implies that the entropy diverges too.  Since one gets a tremendous 
amount of thermodynamics from S(E), one sees that this problem must be cured for any 
sensible thermodynamical behavior to emerge. 

The ultraviolet divergence, by contrast, arises over short distance interactions.  Here the 
problem is the local singularity of the Newtonian pair interaction potential.  Two classical 
point particles can move arbitrarily close to one another.  As they do so, they release 
infinite negative gravitational potential energy.  Partition functions, which need to sum 
over all these states, thereby diverge.   The entropy and other quantities, therefore, will 
not exist (see Rybicki 1971 and Kiessling 1989). 

Let's begin by tackling the ultraviolet divergence.  Technically, we can of course deal 
with this by replacing the gravitational potential with a softening or small cut-off 
potential. For instance, one can regularize the potential with the following replacement 
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where η is a softening parameter that bounds from below the interaction potential.  This 
softening will prevent arbitrarily large momenta from developing.  The question is 
whether there is any justification for this replacement.  Here I think the answer is yes.  
We can perform this maneuver with a clear conscience because we know that ultimately 
classical mechanics gives way to quantum mechanics, and quantum mechanics – via the 
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Pauli principle -- does indeed supply us with a mechanism preventing this kind of 
divergence. 

The infrared divergence of g(E) is perhaps more of a problem. This occurs because the 
integral is taken over an infinite range of position space.  However, as has been pointed 
out by others, there is nothing special here.  The same divergence occurs for the non-
gravitating ideal gas in a spatially infinite universe.  (That issue has in fact been itself the 
subject of controversy among philosophers of science; see the four notes by Popper, 
ending in Popper 1958, and Hill and Grünbaum 1957.)  Since we don't take this 
divergence to prohibit a proper thermodynamics obtaining, we shouldn't in the 
gravitational case either. The solution in the non-gravitational case is to put the gas "in a 
box" and the same can be done in the gravitational case.  What we need to do is focus on 
the time and space scales.  If a system is relatively isolated--if, say, its rate of evaporation 
is proportionally small—we can conceptually put a box around it.  We can do so when 
the interactions with the "box" are much less dominant within the time scales of interest 
than the interactions among constituents.  Eventually the interactions with the box, if it 
really were there, would be highly relevant to the physics.  At this point the idealization 
breaks down.  For some spatial and temporal scales and for some thermodynamic 
observables, however, the system-box interactions will be negligible.  In principle there 
isn't a special problem with gravity.  There remains a question of applicability: are there 
in fact self-gravitating systems and observables with spatial and temporal scales like 
this?  The answer to that question seems to be yes, but that is beyond the scope of this 
essay. 

The divergence problems, therefore, can be solved with plausible idealizations and 
approximations.  The only stumbling block lay in mistakingly thinking such idealizations 
weren't needed all along in non-gravitational systems. 

 

4. NO EQUILIBRIUM? 
 

Since our inquiry is into equilibrium statistical mechanics, the natural next question to 
ask is whether the concept of equilibrium makes sense.2 Many physicists voice 
skepticism about there being an equilibrium state for self-gravitating systems.  In fact, it's 
common in many textbooks and articles simply to assert—with barely any justification—
that self-gravitating systems lack an equilibrium point.  This doubt is based primarily on 
the idea that gravity will cause increasing clumpiness in the system, to the point where 
the "final" state is an ill-defined singularity.  The famous gravitational catastrophe, to be 
discussed below, reinforces this thought.  Since I want to spend my time primarily on 
curiosities of non-extensivity, I can't give this question the attention it deserves here.  It 
surely deserves a separate paper.  Nonetheless, I want to argue that the skepticism about 
equilibrium is mostly unfounded.  The gravitational catastrophe isn't actually so 
                                                
2 Callender 2009 is more-or-less an investigation of the related question whether 
Boltzmann's non-equilibrium statistical mechanics applies to self-gravitating systems.  
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catastrophic.  Furthermore, there do exist exact models of self-gravitating systems for 
which even point-sized equilibrium states are well-defined.  That will be enough for us 
here.  Whether these models correspond to any real systems in the universe and whether 
in light of what one finds there one ought to alter one's sense of equilibrium is postponed 
to another time.   

What is equilibrium, anyway?  This is a foundational question raised by self-gravitating 
systems. Is it the state of maximum entropy?  With self-gravitating systems in mind, 
some have challenged this identification (Landsberg 1984).  If equilibrium is defined via 
maximum entropy, which entropy?  Need equilibrium be defined via a partition function?  
Or should it be defined via the probability measure on state space?  All of these questions 
and more come into play where self-gravitating systems are concerned.  Let's begin by 
describing the reasons why many are unconvinced that self-gravitating systems possess a 
well-defined equilibrium state.   

The first is related to the divergences mentioned above.  If the entropy diverges and yet 
maximum entropy characterizes an equilibrium state, then we don't have equilibrium 
states.  However, as we saw there, we can without embarrassment confine the system to a 
"box" and "soften" the potential.  Doing so removes this reason for skepticism.  And with 
Kiessling 1989, note that even if we don't cut off the close range effect of the potential, 
one could argue, as he does, that "the physical concept of a statistical mechanics 
equilibrium state is independent of concepts such as thermodynamic relations, from the 
beginning. Here, the basic quantity is the phase space probability measure µ, and that 
quantity has a meaning independently of whether Q [the configurational integral] exists 
or not" (205).  A surprising amount of statistical mechanics can survive this difficulty. 

A second reason for doubt stems from what is perhaps the most famous result in 
gravitational thermodynamics, the notorious gravitational catastrophe. Discovered by 
Antonsov 1962, dramatically elaborated upon by Lynden-Bell and Wood 1968, and 
found in many computer simulations, this phenomenon calls into question whether there 
is a largest most probable state toward which systems tend to evolve.  If we take 
equilibrium to be defined as the state that maximizes Boltzmann entropy, then we have a 
worry. 

Mathematically, one tries to find the density distribution f(x,v), defined on 6-dimensional 
µ-space, that maximizes the Boltzmann entropy 

! 

S( f ) = " f log fd3xd3v##  

subject to constraints on the total mass, energy, linear and angular momentum.  This is a 
variational problem, and Antonov shows that it has no solution in the gravitational case.  
In fact, it has no solution even when we artificially confine the system to an arbitrarily 
shaped "ball" of physical space and allow radial asymmetries (Robert 1998).  This result 
also comes with a physical gloss.  The idea, in brief, is that if we begin with a system in a 
stably bound "core-halo" state, the central core as it develops with time will become 
increasingly concentrated without end.  The core loses energy to the surrounding "halo" 
of particles, but because of its negative heat capacity, it will get hotter as it contracts.  If 
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the surrounding halo can't warm up quickly enough, then we get runaway instability.  The 
system gets more and more inhomogeneous, both in configuration and velocity space, 
without limit.  Hence its entropy increases without limit.  For any state--since we're 
dealing with point particles--there is always a higher entropy state found by making the 
core denser and the halo more diffuse. There is no state of maximum Boltzmann entropy; 
therefore, if this is the criterion we use, there is no final equilibrium point.   

This result, as fascinating as it is, has little bearing on our topic.  The demonstration is 
within astrophysics and awash in idealizations.  These idealizations are perfectly natural 
ways of modeling some astrophysical phenomena3, but they do limit the applicability of 
this result for our foundational question. First, the system is assumed to be in virial 
equilibrium, but in the long run this won't always be correct.  The corrections needed for 
describing the system when outside virial equilibrium may significantly affect the 
catastrophe.  Second, the demonstration assumes that the formation of binary star systems 
will be unimportant, but eventually this may not be negligible—even for realistic 
systems.  Third, the Boltzmann entropy that is maximized is the one over the one-particle 
distribution function in 6-dimensional µ-space, not the volume corresponding to the 
macrostate in 6N-dimensional Γ-space.  The former is fine as an approximation of many 
stellar systems, for they don't have many close encounters or collisions.  But at many 
stages of the above process additional physical mechanisms will become important.  If 
we think of the logarithm of the 6N-dimensional volume as the "real" entropy, then we've 
only shown that an approximation for some spatial and temporal scales doesn't have an 
equilibrium point.  Fourth, and most importantly, catastrophic behavior occurs for only 
certain combinations of the mass, energy and radius of the system.  Other combinations, 
such as for so-called Lane-Embden isothermal spheres, possess an asymptotic state that 
obeys Maxwell-Boltzmann statistics.  So even if we ignored all the idealizations, the 
gravitational catastrophe shows only that some self-gravitating systems suffer from 
problems in defining equilibrium.4 

A third problem for equilibrium stems from a combined intuitive repugnance coupled 
with skepticism about the well-definedness of the presumed equilibrium state. It is widely 
assumed (we'll see why momentarily) that the notion of equilibrium appropriate to 
gravitational thermodynamics is a state in which all N point particles are sitting on a 
single point.  Equilibrium, it is often thought, instead should be an extended state, not a 
monstrosity like that.  Kiessling, however, counsels that our ordinary notion of thermal 
equilibrium originates from the non-gravitational cases; therefore, it shouldn't bias us 
against non-orthodox states appearing in more unfamiliar systems: 

Let us therefore try to take a less biased standpoint and consider a generalized 
meaning of equilibrium thermodynamics simply as a tool that describes the 
average fate of physical systems possessing an overwhelmingly large number of 
degrees of freedom, without making too restrictive assumptions about the 

                                                
3 See Ipser 1974 on this topic and also equilibrium. 
4 Another similar reason for skepticism is that in mean field theory, where one uses the Vlasov equation to 
model stellar systems, there are many equilibrium (stationary) solutions.  But this takes the equilibria found 
in the mean field limit to be the genuine article. 
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properties of the final state….(205) 

With the intuitive concerns put aside – as I think they should be – the question becomes 
whether such a "singular" state is well-defined and possibly part of a functioning 
statistical mechanics.  As it turns out, it is. 

Before sketching how, let's step back and ask the prior question of why so many think 
equilibrium will be a state with all particles resting on a single point.  In fact, let's step 
even further back and begin by noting that the choice of equilibrum state is really 
absolutely basic in statistical mechanics.  One can't prove that a state is equilibrium, at 
least not in the sense of showing that most systems will end up in such and such a state.  
Any such proof will of course depend on the probability measure one adopts, but that is 
the very topic at issue.  The best one can do is argue from physical considerations that 
such-and-such a state is expected, and then show mathematically that such a state can be 
characterized and that it plays the roles you want of it.  Importantly, one then shows that 
this description characterizes the behavior one initially sought to describe; that is, one 
hopes there is a connection between the probability measure and the actual frequencies.  
If not, then back to the drawing board.  "Finding" equilibrium can be a messy process.  

In the mathematical physics literature it is assumed that the equilibrium state of a self-
gravitating system is a single material point.  The motivation for this is thinking about an 
energetically open system confined to a box (as in Section 3), but without a short-
distance cut-off.  It is expected that gravitational energy will gradually be lost to the 
outside, resulting in a more and more collapsed state.  It is also expected that angular 
momentum built up from the formation of binaries will eventually be carried outside the 
box.  The end result of this process is the most collapsed system possible, the state when 
all the particles sit on a single point.  This state is identified as equilibrium.  The system 
as described is most naturally represented with the canonical ensemble (N particles 
trapped in a box, energetically open).  Since the momentum and configurational 
equilibrium densities factorize in the canonical ensemble, yielding a trivial Gaussian 
measure over the momentum sector (see Kiessling, 213), Kiessling and others focus on 
the configurational sector.  The question posed is whether the canonical equilibrium 
measure can describe this collapsed state in 3N-dimensional configuration space. 

Kiessling's 1989 proof that it can for three-dimensional systems is a major result.  There 
he examines modified gravitational potentials with smoothed out singularities.  He shows 
that in the limit, as these potentials approach the exact Newtonian potential, the canonical 
ensemble converges on a superposition of Dirac distributions each describing a collapsed 
state.  Which exact spot will suffer the collapse is equal to a probability density that 
depends on the external potential and a Boltzmann-like factor.  Kiessling is then able to 
show that this work connects up with thermodynamics in the mean field limit (see 
Section 8). 

Now, as imaginative and rigorous as Kiessling's work is, one can fault it along various 
lines.  One might object to his assumption that the potential energy of the wall of the box 
be independent of the particles' momenta.  Or one might have wanted to start with an 
isolated system and the microcanonical ensemble, especially given that foundationally 
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one typically justifies the canonical from the microcanonical,  not vice versa.  Then 
perhaps a state of maximal dispersal in configuration space is most natural due to 
evaporation.  We will not pursue these or similar questions, although I invite readers to 
do so.  Obviously more work is needed.  However, we have in this result a rigorous proof 
that equilibrium is well-defined by the canonical equilibrium measure even for what is in 
many ways the worst-case scenario, the situation where all particles sit on a single 
material point. That is enough for us to press forward.5  

 

5. NON-EXTENSIVITY 
 
 
Intuitively put, extensive quantities are those that depend upon the amount of material or 
size of the system, whereas intensive quantities are those that do not.  The mass, internal 
energy, entropy, volume and various thermodynamic potentials (e.g., F,G,H) are 
examples of extensive variables.  The density, temperature, and pressure are examples of 
intensive variables.  Mathematically, the most common expression for extensivity is the 
definition that a function f of thermodynamic variables is extensive if it is homogeneous 
of degree one.  If we consider a function of the internal energy U, volume V, and particle 
number N, homogeneity of degree one means that  

         f(aU,aV, aN) = af(U,V,N)                                                     (3) 

 for all positive numbers a.  

In thermodynamics and statistical mechanics both the energy and entropy are assumed to 
be extensive.  This neatly encodes the experimental facts.  Consider a box of gas in 
equilibrium with a partition in the middle and consider the entropy, so that a=2 and f=S.  
Then (3) describes the experimental fact that if we double the U,V and N of the system 
then we also double the entropy.  The same goes for the energy.  Thermodynamically, we 
can take energy or entropy to be the dependent variable, U=U(S,V,N) or S=S(U,V,N); if 
one is not extensive then the other is not.  Statistical mechanically, matters are a bit 
subtler. 

Extensive functions are often conflated with additive ones. A function—using our 
example, entropy—is additive if S(U1+U2, V1+V2, N1+N2)=S(U1+V1+N1)+S(U2+V2+N2).  
With minimal assumptions homogeneity of degree one does imply additivity.  But the 
two concepts are of course distinct and can come apart in some systems; but for most 
realistic physical systems they stand or fall together.  For this reason, except as noted, 

                                                
5 Interestingly, note that few in the astrophysics community care about whether there is a "final" 
equilibrium point, a global maximum entropy.  Often using the one-particle distribution form of the 
Boltzmann entropy, the field is focused on so-called meta-stable states, states of local entropy maxima, as 
the relevant object of study (e.g., Chavanis 2005).  Stellar systems typically evolve very slowly, so slowly 
that many variables can be assumed essentially fixed.  And in many numerical simulations one finds 
relatively stable long-lasting states whose average values for thermodynamic parameters don't fluctuate 
wildly.  Statistical mechanics is then applied to these meta-stable or quasi-equilibrium states. 



Rough Draft!  Please don't quote. 

 11 

we'll use the two terms interchangeably.  See Dunning-Davies 1983 and Touchette 2002 
for excellent discussions of extensivity and additivity. 

The problem we want to consider arises from the fact that extensivity (of the entropy and 
energy) seems to not even be approximately true for self-gravitating systems.  Yet 
without extensivity holding, it's not clear how much of equilibrium thermodynamics or 
statistical mechanics survive. 

Think about energy.  The assumption that energy is extensive is plausible partly because 
in terrestrial cases we are usually dealing with short-range potentials.  At a certain scale 
matter is electrically neutral and gravity is so weak as to be insignificant.  If the potential 
is short-range and our subsystems aren't too small, then the subsystems will interact with 
one another only at or in the neighborhood of their boundaries.  When we add up the 
energies of the subsystems, we ignore these interaction energies.  The justification for 
this is that the interaction energies are proportional to the surfaces of the subsystems, 
whereas the subsystem energies are proportional to the volumes of the subsystems.  So 
long as the subsystems are big enough, the subsystem energies will vastly trump the 
interaction energies as the number of subsystems increases because the former scale as 
(length)3 and the latter as (length)2.  The assumption is thereby justified. 

However, if gas molecules are replaced by stars—that is, short-range potentials replaced 
by long-range potentials—this reasoning doesn't work.  The interaction energies may not 
be proportional to the subsystem surfaces.  For short-range potentials, the dominant 
contribution to the energy comes from nearby particles; but for long-range potentials, the 
dominant contribution can originate from far away particles.  To drive home the point, 
consider a sphere filled with a uniform distribution of particles.  Now add a particle to the 
origin and consider its internal energy U:  

! 

U " 4#r2dr$r%3%& " drr
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0

R

'
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One can verify that with ε>0 ("short-range potentials"), the significant contribution to the 
integral comes from near the particle's origin, whereas with ε<0 ("long-range potentials"), 
the contribution comes from far from the origin (Padmanabhan 1990).  The interaction 
energies do not become negligible as the system grows. 
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As a result, think of what happens in the standard case of a chamber of gas divided into 
two equal boxes, A and B.  If the particles are interacting via long-range forces, the 
particles in box A will feel the particles in box B as much or even more than the particles 
nearby.  Let EA represent the energy of box A and EB represent the energy of box B.  
Because 

E=EA+EB+f(EA,EB) 

where f(EA,EB) is the non-negligible interaction energy, it is easy to devise scenarios 
whereby EA = EB = -a, where a>0, yet where the energy of the combined system E 
vanishes. The energy might not be even approximately additive.  Same goes with the 
entropy.6 

Of course, the problem is really one of degree.  Real finite systems aren't perfectly 
extensive.  The Coulomb forces are just as long-range as the gravitational.  The 
difference is that at certain scales the Coulomb forces are screened.  Are they perfectly 
screened?  No.  Systems interacting primarily via the Coulomb force are therefore non-
extensive too—strictly speaking.  Nonetheless, there is a real physical difference between 
the gravitating and non-gravitating cases, for one has screening mechanisms the other 
doesn't.  It's important not to let the distinction collapse merely because it's ultimately one 
of degree.  

One way of collapsing the distinction appears in "rigorous" treatments of statistical 
mechanics.  Here one tries to regain the exact formal properties of thermodynamics 
despite the fact that we know it holds only approximately.  Elsewhere I have dubbed this 
practice "taking thermodynamics too seriously" (see Callender 2000) and pointed out that 
that it can often lead us astray.  In this case it is simply a matter of semantics.  In 
approaches to statistical mechanics like Ruelle 1968's, it's commonly said that no finite 
system is ever extensive.  What is meant is that in approaches wherein one defines the 

                                                
6 There are ways of re-defining the entropy of energy so that one or the other but not both are non-additive; 
see Johal, R. 2006. 
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entropy and energy via the partition function, one is unable to reproduce the distinction 
between extensive and intensive for any finite system.  No matter how large the system, 
if it's finite, surface effects contribute to the partition function.  Entropy and energy are 
claimed to be truly extensive only in the thermodynamic limit, where N,V go to infinity 
while the ratio N/V is held constant.  In this field a variable f is extensive if the 
thermodynamic limit of f is infinity while the thermodynamic limit of f/V is constant.  
Strictly speaking, only in infinite systems can entropy and energy be truly extensive.  
Hence all real systems, be they gravitational or not, are strictly non-extensive.  Of course, 
it is open to retort that we only deal with finite systems (field theories to one side). 
Clearly the idealization of strict additivity, without even microscopic surface interactions 
among subsystems, is a strong idealization.  

But no matter.  It's still a fact that self-gravitating systems, unlike Coulomb systems, have 
no built-in tendency causing them to be even approximately extensive, in the sense 
defined earlier.  This physical difference, although invisible in certain contexts, is no less 
real for being a matter of degree.  Indeed, the cost of the energy and entropy being non-
extensive in this sense is quite profound. 

  

6. EXTENSIVITY IN THERMODYNAMICS 
 
 
Let's concentrate initially on the costs incurred by classical phenomenological 
thermodynamics.  The trouble with doing so is that there is no one canonical way of 
developing the theory.  Some authors take as axioms what others derive, and vice versa. 
So given any isolated assumption that is falsified by non-extensivity, one can always find 
another treatment where that assumption is not basic but derived.  That said, non-
extensivity wreaks havoc with traditional thermodynamics no matter the route by which it 
reverberates through the subject.  In most treatments, extensivity is axiomatic.  Rief 1965 
takes it as axiomatic and Landsberg 1961 suggests that the claim that all thermodynamic 
variables are either extensive or intensive might be raised to the level of the "Fourth Law" 
of thermodynamics.  

For example, the now-classic textbook of Callen 1960 begins with a handful of 
postulates.  Postulates I, II and III either explicitly (in III) or implicitly (I and II) assume 
the additivity/extensivity of the system.  Postulate III states that "the entropy of a closed 
system is additive over the constituent subsystems" (25), so additivity is treated as an 
axiom.  Postulate II requires that entropy is a function of the extensive parameters of the 
system in equilibrium.  In that case, if energy is not extensive then entropy is not a 
function of energy.  Worse than that, the fundamental equation of state from which scores 
of results are derived would no longer be S(U,V,N) but S(V,N).  Even Postulate I, the 
existence of equilibrium states, tacitly requires extensivity of the entropy and/or energy, 
for Callen declares an equilibrium state as being completely characterizable by extensive 
parameters.  Of course, there are extensive parameters in addition to energy and entropy, 
but a formalism based around, say, volume and mole number, would scarcely be 
recognizable as thermodynamics.  With the first three basic postulates impacted by the 
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loss of extensivity, scores of important implications are lost, e.g.:  

• One needs additivity to derive that subsystems mutually in equilibrium have equal 
temperatures (Callen, 37). 

• If subsystems mutually in equilibrium don't have to have equal temperatures, then 
the transitivity of equilibrium also fails, i.e., the "Zeroth Law" of thermodynamics 
(that if two thermodynamic systems are each in equilibrium with a third, they are 
also in equilibrium with each other) fails. 

• When a system is in equilibrium, its large subsystems also will be in equilibrium.  
Clearly this doesn't follow if the system is non-extensive. 

• The Gibbs-Duhem equality, in which one shows that three intensive quantities are 
interdependent, is one of the most important equations of classical 
thermodynamics.  Yet it requires additivity in its derivation (in order to use 
Euler's theorem) and so it's not generally true for non-extensive systems. 

• In many axiomatic treatments of thermodynamics, extensivity is a requirement for 
the equilibrium Second Law (see, e.g., Lieb and Yngvason 1998). 

The reader can no doubt think of more trouble caused by non-extensivity.  He or she is 
invited to go through a thermodynamics text and circle all the derivations lost by 
removing the assumption of extensivity.  I'll assume, however, that the above list suffices 
as an indication of the damage. 

  

7. EXTENSIVITY IN STATISTICAL MECHANICS 

  

Moving to statistical mechanics, matters are in many ways more interesting.  However, in 
the end, here too the approximate extensivity of the energy is often taken as axiomatic.  

For example, Landau and Lifshitz 1969 take the statistical independence of subsystems 
and the associated additivity as perhaps their most basic assumption, for through a chain 
of reasoning they use it to ground the "most important conclusion…[that the] values of 
the additive integrals of motion … completely determine the statistical properties of a 
closed system" (11).  With this, they write, it is possible to replace the "staggeringly large 
data" of the mechanical approach with a simple statistical distribution, i.e., the 
microcanonical ensemble, the basis of equilibrium statistical mechanics (11).  It is not an 
exaggeration to say that extensivity of energy, in their treatment, is what makes statistical 
mechanics possible. 

To take another example, consider Ruelle's 1969 elegant and influential treatment of 
statistical mechanics.  In his hands, "normal" thermodynamic behavior is possible only 
when two conditions hold, stability and temperedness. We won't spend time describing 
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these conditions here, but suffice to say, in self-gravitating systems stability is violated.7  
Interestingly, if we make our potential repulsive rather than attractive at large distances, 
then the temperedness condition is violated (Campa, 11).  So one way or the other, long-
range forces spell trouble for thermodynamic behavior as Ruelle understands it. 

As in the thermodynamic case, one finds extensivity assumed throughout many 
treatments of statistical mechanics.  Not surprisingly, since statistical mechanics grounds 
thermodynamics, it's assumed in statistical mechanics in many of the same places it is in 
thermodynamics.  However, let's note a few additional features of interest: 

• Let subsystem 1(2) correspond to the element of phase space dp(1)dq(1) (dp(2)dq(2)) 
and the combined subsystem correspond to the element dp(12)dq(12).  Statistical 
independence means simply that the probability ρ the joint subsystem lies in 
dp(12)dq(12) is equal to the direct product of the individual probabilities of lying in 
the individual elements of phase space, i.e., ρ(12)dp(12)dq(12) = ρ(1)dp(1)dq(1) . 
ρ(2)dp(2)dq(2) . Thus, in terms of the Gibbs entropy, S = -SρN[logρN], one can 
prove that S is additive iff ρ is factorizable among its component systems 
(Touchette 2002).  If ρ is not factorizable, then the entropy won't be additive and 
all of the features hanging on entropy being additive won't follow.  What we have 
seen is that in self-gravitating systems the Gibbs entropy may not be even 
approximately factorizable.  It does, however, still exist – whereas it may be 
argued that non-extensive entropy in thermodynamics is a contradiction in terms, 
for on many accounts thermodynamic entropy is definitionally extensive. 

• Statistical mechanics is based on the use of three probability distributions, or 
ensembles: the microcanonical, the canonical, and the grand canonical.  The most 
commonly used ensemble is the canonical.  This ensemble is used for a system in 
contact with a heat bath at a certain temperature.  The system can exchange heat 
but not matter with the heat bath, so the macroscopic parameters are V,T, and N, 
and E is not fixed.  Though used less often, the microcanonical ensemble is often 
regarded as more basic.  This ensemble represents a closed system with E,V and N 
fixed.  The distribution is the one that is uniform over the energy hypersurface 
corresponding to the system of interest, and one hopes to justify this distribution 
in some way. The justification of the canonical ensemble is then considered 
parasitic upon the justification of the microcanonical ensemble.  One justifies or 
simply assumes the uniform measure for a closed system.  Then one justifies the 
canonical ensemble by assuming the system of interest is a small subsystem of a 
much larger system itself described by the microcanonical ensemble.  With the 
added assumption of additivity of energies, one can then derive the canonical 
ensemble as an appropriate probability distribution for the subsystem. Without 
this additivity, one expects strange non-canonical behavior to emerge from non-
extensive systems in contact with heat reservoirs. 

• Non-extensive systems have no conventional thermodynamic limit.  The 
thermodynamic limit is one where we normalize the extensive variables by the 

                                                
7 Campa 2008 contains a good treatment of the reason why this is, and Katz 2003 is good on stability.  
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volume V or particle number N, e.g., E/N, thereby making the ratios intensive; 
then we let N,V→ ∞ while keeping these intensive ratios finite.  For a rigorous 
discussion of this problem see Padmanabdum 1990 and references therein.  
Intuitively, this fact is not surprising.  The existence of the thermodynamic limit 
depends on making the contribution of surface effects go to zero as N,V→∞.  But 
with a non-additive system, we saw that the surface effects aren't going to get 
smaller as N and V increase.  If we have a self-gravitating system in a box, as we 
increase the size of the box, the total kinetic energy will scale with the mass, 
which in turn scales with the size of the box: Ekin∝M∝R3.  However, the potential 
energy Epot will grow much faster: Epot∝M5/3.  This makes the specific 
gravitational potential energy of the system, the total potential energy divided by 
N, increase indefinitely as N increases (see Heggie and Hut 2003).  Another way 
the lack of a thermodynamic limit is unsurprising is that the connection between it 
and extensity is sometimes especially direct. Beck and Schloegl 1993, like many 
others, state that a system is said to possess a thermodynamic limit only when its 
total entropy and energy are extensive quantities (in the rigorous sense described 
earlier).  And adding one more link to the chain, Ruelle proves that the 
thermodynamic limit exists only for interactions that are thermodynamically 
stable, whereas non-extensive systems aren't stable.  Ironically, the 
thermodynamic limit doesn't apply to very large systems unless the force relevant 
to such systems, i.e., gravity, is ignored. 

• There can be negative specific heats in self-gravitating systems. The specific heat 
capacity C is a measure of the amount of heat energy required to raise the 
temperature of a material one degree Kelvin.  In classical thermodynamics, C is 
always positive.  For such a system, adding energy makes the temperature 
increase and removing energy makes the temperature decrease.  Because it is so 
closely tied to the stability of a thermodynamic system, some texts treat positive C 
as a basic principle of thermodynamics.  In the self-gravitating systems literature, 
however, it is a commonplace that there are systems with negative heat capacity.  
Removing energy from stellar systems can make them hotter.  There is a lot of 
controversy here and much I could say, but I must leave this topic for another 
paper.  Suffice to say, negative specific heat is quite counter-intuitive; 
furthermore, it is connected to the onset of phase transitions and ensemble 
inequivalence, two fascinating topics. See Lynden-Bell 1999 and Touchette et al 
2004. 

 

8. EXTENSIVITY REGAINED? 

The physics community's reaction to non-extensivity divides into three broad camps.  
One group seeks to extend/modify equilibrium statistical mechanics to cover cases of 
non-extensive energy and entropy.  Another uses the problems mentioned as a reason to 
ditch equilibrium statistical mechanics in favor of non-equilibrium techniques.  But 
probably the majority of physicists pursue a conservative approach.  Instead of modifying 
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or abandoning equilibrium statistical mechanics, they continue to use it but seek 
approximations, limiting regimes, and so on, wherein extensivity is regained.  In this 
section I'll focus on this last response.  Since the other two groups pursue agendas outside 
the scope of this paper, I'll ignore them apart from a little discussion of the first group in 
Section 9. 

Divide our N-body system up into two cells, 1 and 2.  Due to the gravitational correlation 
energy Uint between cells, we've seen that the internal energy isn't extensive:  

            U = U1 + U2 + Uint. 

 Yet we can still ask whether there are systems for whom 

            Uint << U1 + U2. 

If so then extensivity is a good approximation and ordinary equilibrium statistical 
mechanical techniques are used again.  Let's investigate two ways of regaining 
extensivity. 

First, here is a quick and loose argument one sometimes sees (e.g. Chavanis 2005) to 
show that entropy can be extensive for self-gravitating systems.  Define the entropy via 
the standard  

! 
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where E is the total energy and T the temperature.  Then make two assumptions: (a) that 
the system is virialized, and (b) that the temperature is proportional to the mean kinetic 
energy.  The first assumption holds if the system is stably bound.  Then the virial theorem 
states that 

           

! 

K
"

=
1

2
V

"
 

 where τ is the time over which the averages are taken.  The second assumption is that  
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where kB is Boltzmann's constant.  As one can quickly inspect, it then follows that both E 
and T are proportional to N; in fact they have the same N-dependence.  Hence the entropy 
S, defined in terms of these notions, must also have similar N-dependence.  S is therefore 
extensive. 

This argument is problematic at every step.  The virial theorem is a theorem of mechanics 
often used in astrophysics.  It says that if the average time derivative of a function G 
known as the scalar virial is zero, then in cases like those of present interest the average 



Rough Draft!  Please don't quote. 

 18 

potential energy is proportional to two times the average kinetic energy.  In astrophysics 
the antecedent is often ignored if the system is stably bound for a long time.  The 
reasoning is that if the scalar virial is bound between Gmin and Gmax for a long time, as 
happens in orbits, then its average is zero.  For the time scales of interest, this assumption 
is usually perfectly innocuous.  However, a priori there is no reason to think these time 
scales are equal to the thermodynamic times scales.  Worse, that the system is in what is 
sometimes called "dynamical equilibrium", i.e., in a stable orbit, doesn't imply that it is in 
thermal equilibrium.  The virial theorem holds regardless of whether the system is in 
thermal equilibrium.  That the system is stably bound for a time period τ doesn't in the 
least imply that we can assign it a thermodynamic temperature.  Furthermore, even if we 
do assume the system is in thermal equilibrium, it doesn't follow that its temperature is 
proportional to kinetic energy.  There are many systems—and in fact some gravitating 
systems—where this is not so.  

The quick argument needs more justification before it can be employed.  Nonetheless, it 
does at least show that if these assumptions can be consistently employed, then the 
energy and entropy can be extensive even if the system is self-gravitational. 

The more common method of regaining extensivity is by going to the mean field limit.  
First, one rescales equation (1) by what is known as the "Kac" prescription (Kac, 
Uhlenbeck and Hemmer 1963).  That is, one chooses the spatial and temporal parameters 
so that the coupling parameter c=-Gm2 becomes c=±1/N.  Hence (1) becomes 
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Now, keeping all parameters fixed, and in particular the volume, one takes the N→∞ 
limit.  This differs from the usual thermodynamic limit, for in that limit the volume V also 
goes to infinity.  The resulting limit has a number of nice features, for example, from it 
one can obtain the collisionless Boltzmann equation (also called the Vlasov equation), 
which is quite useful in astrophysics.  For our purposes, however, what is important is 
that the energy H is proportional to N at this limit, and hence, the energy is extensive.  In 
the literature it is commonly asserted that the N,V→∞ limit is appropriate for short range 
systems but the N→∞ limit is what is appropriate for long range systems.  (In a similar 
development, de Vega and Sanchez 2002 argue that in the so-called "dilute limit", where 
N,V→∞ while N/V1/3 stays fixed, the internal energy, free energy and entropy become 
extensive; however, this claim has been disputed (Laliena 2003).) We'll return to these 
limits in the next section. 

Finally, I should mention two further regimes in which non-extensivity can be regained, 
but which I won't describe in detail here.  Both are by William Saslaw.  Saslaw 2003 is 
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focused mostly on infinite N systems and the canonical ensemble. But he does mention 
some of the problems we discuss here and offer justifications for his methods.  Although 
the first justification strictly departs from our Newtonian N-body situation, it is too good 
to ignore: Saslaw shows with a neat argument that the expansion of the universe 
effectively cancels out the long-range part of the gravitational force. This limits the bulk 
effects of gravity to certain lengthscales.  So there is a gravitational kind of screening 
after all.  And at these lengthscales the energy is approximately additive.  The second 
justification focuses on features of the so-called correlation length used in astrophysics, 
e.g., its steepness, and shows that in some cases it too will leave the interaction energy 
negligible for certain spatial and temporal scales. 

 

9. FOUNDATIONAL QUESTIONS 

Gravitational thermodynamics stimulates many foundational questions in statistical 
mechanics.  We have already broached some of them – e.g., what is equilibrium, whether 
systems are strictly extensive, the status of divergences, the problem of negative specific 
heat – and no doubt each can be discussed in far greater detail.  Although there is much 
one could discuss, let me finish by concentrating on three philosophical points little 
discussed in the literature.  

What Justifies the Thermodynamic Limit--and Which Limit? 

The lack of a well-defined conventional thermodynamic limit is prima facie disturbing.  
Many approaches in the foundations of statistical mechanics crucially rely upon this 
limit.  It is also said to provide the resolution of various "paradoxes" in statistical 
mechanics (see Styler 2004).  However, I want to focus on a question raised by the result 
mentioned in the previous section, where we saw that extensivity can be regained by 
using an unconventional thermodynamic limit.  In fact, it's not uncommon for physicists 
to use modified thermodynamic limits to achieve their ends.  What should we make of 
this practice?  Is one limit the "right" physical limit and the other the "wrong" one, given 
the goals?  What makes a limiting procedure correct?  Is a pragmatic justification, i.e., 
that the limit succeeds in getting the desired results, enough?  Or do we require a more 
physically based justification?  

Readers of this journal will be familiar with the funny business that can accompany the 
unrestrained use of limits.  My favorite example (told to me by John Norton) is that in the 
limit where the blades are infinitely long a helicopter can generate lift even when its rotor 
is still. And more seriously, one can object to limits that alter the lawlike structure of a 
theory, such as limits that let fundamental constants go to infinity or zero, e.g., 
notoriously, the limit wherein Planck's constant goes to zero.  With so much opportunity 
for mischief, one naturally wants to be on guard against reverse engineering: assuming, 
for instance, that extensivity holds and then taking the limits needed to get there.  These 
issues definitely arise in the present case.  In Lalienda's critique of deVega and Sota's 
"dilute limit", the author charges deVega and Sota with imposing "ad hoc" conditions to 
obtain a well-defined "dilute" thermodynamic limit.  This criticism presupposes that 
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some restrictions are legitimate and others not.  By contrast, while not exactly denying 
this, in a side remark Barre and Bouchet 2006 approach the topic by demanding a limit 
that gives physics largely independent of how large N is.  That is, they want to find the 
physics of effectively intensive variables.  But in the context of the foundational question 
of whether one can regain extensive versus intensive variables, this motivation would 
seem to beg the question.  It says: take whatever limit is needed to recover the 'intensive 
versus extensive' split.  Obviously a criterion of some kind is needed to determine what 
limits (with what restrictions) justify what physical claims.  I can't articulate one here, but 
I can gesture in the direction I think such a criterion can be found.8 

Thermodynamics is a coarse-grained, approximate, high-level theory.  The theory has 
many formal features, e.g., extensivity, that don't hold exactly at the microlevel.  At the 
fundamental level it's not true that the entropy of a system is extensive.  If you double the 
parameters E,V, and N, you don't exactly double the entropy.  Surface effects exist and 
can contribute, albeit not much for large terrestrial systems.  We should accept this lack 
of perfect extensivity at the microlevel without embarrassment.  That said, our microlevel 
theory had better recover the phenomena. The phenomena are approximately extensive 
when N is large.  How do we know our microphysical theory implies this?   

One quick way to reassure oneself–though it is neither necessary nor sufficient for the 
job--is to show that this feature holds in the thermodynamic limit.  The thermodynamic 
limit is a kind of expedient for this justificatory enterprise.  Sure enough, in the 
thermodynamic limit, one can show that for many systems doubling E,V and N does 
exactly double the entropy.  This doesn't tell us everything we need to know.  It doesn't 
guarantee that for large finite N extensivity holds or even approximately holds (if the 
limit is not smooth).  All the usual "short-run" versus "long-run" problems can surface.  If 
one found out that for N=1023 the system's entropy was nowhere near doubled for 
doubled E,V, and N, then one would really worry.  In this sense the thermodynamic limit 
isn't sufficient to assuage our worries.  Neither is it necessary.  If one had a guarantee that 
for all reasonable finite N extensivity approximately held, one wouldn't need the 
thermodynamic limit; after all, that regime is imaginary and the system doesn't have to be 
perfectly extensive.  However, often we're not in a position to know that large finite N 
approximates thermal properties, so we make due with what we can, i.e., a proof in the 
thermodynamic limit.  With this information one bets that the theory is on the right track. 

Returning to the question of whether there is a "correct" thermodynamic limit, in one 
sense the answer is yes and in another no.  The latter seems correct if we're asking 
whether one form of the thermodynamic limit, say, with V going to infinity, is privileged 
over other forms.  Of course not.  There is nothing in the above rationale that 
distinguishes for all types of systems the right limiting procedure for all ends.  Yet the 
former seems right in the sense that there is a standard. The typical microphysics of the 
system at the thermodynamic scale provides the standard.  When we use the conventional 
thermodynamic limit we usually tell a story about how the surface effects will be 

                                                
8 Liu 2001 is the only paper I know in the philosophical literature broaching this question.  Also, it would 
be interesting to compare the conventional thermodynamic limit with the mean field limit with respect to 
"solving" Styler 2004's six paradoxes. 
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swamped by the volume effects, as in Section 2.  This story is a sketch of a justification 
for looking at the physics when these "inessential" effects are driven down.  In the 
absence of such a rationale, the choice of restrictions and variables to send to infinity can 
seem ad hoc.  

Ensemble Nonequivalence: Will the True Ensemble Please Stand? 

In mainstream Gibbsian statistical mechanics, the choice of probability distribution or 
ensemble is widely deemed a matter of convenience.  One can choose the 
microcanonical, canonical, or grand canonical ensemble.  They are supposed to be merely 
different windows onto the same physics, each corresponding merely to the fixing of 
different thermodynamic parameters.   The physics isn't supposed to hang essentially on 
our choices on how we model the system. 

What result supplies us with this confidence?  It is widely claimed that the three 
ensembles are provably equivalent in the thermodynamic limit.  Textbooks will gesture at 
facts like the following.  Focusing on the canonical and the microcanonical ensembles, 
when N goes to infinity, the energies of most configurations in the canonical ensemble 
are equal to the average energy; hence in the limit one gets systems all of the same 
energy, i.e., the microcanonical ensemble.  Reasoning like this, and the knowledge that 
there are relevant theorems proven, leads to the common belief that the three ensembles 
are equivalent in the conventional thermodynamic limit. 

However, there is no completely general proof of equivalence of ensembles, so far as I 
am aware.  Rigorous treatments (e.g., Ruelle) are more careful, claiming only that the 
three ensembles are equivalent in the thermodynamic for some or most physical systems. 
Some textbooks may even acknowledge that the three ensembles are inequivalent for 
systems undergoing phase transitions, a fact Gibbs 1902 pointed out more than a century 
ago.  The so-called "problem of equivalence" has been a foundational problem for a long 
time, even before we turn to long-range systems.  Galavotti 1999 writes that the problem 
of equivalence "is a fundamental problem because it would be a serious setback for the 
whole theory if there were different orthodic ensembles predicting different 
thermodynamics for the same system" (69). Dunning-Davies warns, "if one ensemble 
leads to one set of conclusions but a second leads to a different set, it is the whole 
theoretical discussion that should come under review."  And Huang 1987 writes, "From a 
physical point of view, a microcanonical ensemble must be equivalent to a canonical 
ensemble, otherwise we would seriously doubt the utility of either" (148).  With self-
gravitating systems, it seems these worries are all the more pressing. 

The reason it is more pressing, of course, is that without a well-defined conventional 
limit, even where we otherwise can prove equivalence of ensembles we cannot if they 
represent self-gravitating systems. (The unconventional limit described above doesn't 
reinstate ensemble equivalence.)  In self-gravitating systems, the three ensembles can 
describe very different physics.  In fact, in toy self-gravitating systems, one can 
demonstrate strikingly divergent physical behaviors for self-gravitating systems between 
the microcanonical and canonical ensembles. The former, for instance, allows negative 
specific heats whereas the latter cannot—and in gravitational thermodynamics this is 
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regarded a virtue.  Be that as it may, the situation has now changed: it's not just that we 
don't know (i.e., haven't yet proved) that the three ensembles are equivalent for some 
systems; it's that now we know that they're not equivalent for some systems, even ones 
not undergoing phase transitions. 

What this nonequivalence means for the entire Gibbsian program has yet to be considered 
from a foundational perspective, but it would seem to call for serious study.  When the 
ensembles are inequivalent, a number of questions face us.  Do we distinguish one 
ensemble and view it as correct to the exclusion of the others?  In fact, most of the 
gravitational thermodynamics literature does do this—but Gross 2001 most vocally.  
They take the real physics as being described by the microcanonical ensemble.  And 
since one needs additivity to derive the canonical from microcanonical, one cannot derive 
the canonical from the microcanonical even if they aren't equivalent in the 
thermodynamic limit.  Thus Combes and Roberts 2007 write that as a result of non-
extensivity "the canonical formalism of Gibbs is no longer justified".  Others, by contrast, 
stick with the canonical description as basic.  It is, after all, the easiest to use, and so there 
is real incentive to standing by it. 

Others consider moving to the use of new ensembles. Costeniuc et al 2006 define a new 
'generalized canonical ensemble' by modifiying the Lebesque measure from which the 
canonical ensemble is crafted.  They then show that this 'generalized canonical ensemble' 
is equivalent to the microcanonical measure in the conventional thermodynamic limit.  
They also consider the little-discussed Gaussian ensemble, which is the ensemble said in 
the first instance to be appropriate to a system in contact with a finite heat reservoir. This 
ensemble is also equivalent to the microcanoncal ensemble.   

The phenomenon of ensemble nonequivalence and its connection to features such as non-
concavity of the entropy, phase transitions, and negative specific heat have been the 
subject of an awful lot of research lately.  The mathematical understanding of these 
properties and their relationships has advanced considerably over the recent years (for an 
introduction, see Touchette, Ellis and Turkington 2004).  However, to my knowledge, 
there has not been a single paper in the philosophical foundations appraising this problem 
for the Gibbsian program nor recommending a course of action.  

Tsallis Statistics 

In response to the problems described here, there is a research program organized around 
non-extensive statistics. In 1988 Tsallis developed a generalization of the Boltzmann and 
Gibbs entropies, namely, the Tsallis entropy.  The Tsallis entropy reduces to the 
Boltzmann and Gibbs entropies when the system is extensive, but is different otherwise.  
Since then a whole school devoted to non-extensive statistics has arisen based around this 
new entropy formula. The entropy is 

! 

Sq (p) =
1

q "1
1" p

q
(x)dx#( )  

where p the "probability" distribution (scare quotes because it's not clear they're really 
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probabilities) and q is a positive real number interpreted as a kind of index of extensivity. 
When q1 the Tsallis entropy reduces to the ordinary Gibbs entropy. The motivation 
behind the program is to show that the Tsallis entropy works well in situations where the 
Boltzmann and Gibbs entropies allegedly break down. Normal statistical mechanics is 
supposed to correspond only to the case where a system is approximately extensive. 
Long-range force systems like self-gravitating systems are supposed to be one prominent 
example where Tsallis statistics are needed. 

The debate in the literature over the necessity of Tsallis statistics is sometimes very 
heated.  Proponents of Tsallis statistics write papers displaying systems for which they 
claim traditional mechanical techniques come up short; defenders of statistical mechanics 
then respond with criticism of the new techniques and try to show how the Boltzmann-
Gibbs framework suffices to account for the physics. 

However, before one even engages in this back-and-forth, one might inquire from a 
foundational perspective whether the Tsallis entropy really makes sense.  The paper by 
Nauenberg 2003 is quite critical of Tsallis entropy, but there is room for more debate. 
Those interested in the foundations of statistical mechanics may wish to weigh in on this 
debate. 

 

11. CONCLUSION 

As advertised, this discussion has raised more questions than it's answered.  We are left 
with puzzles about the thermodynamic limit, ensemble non-equivalence, negative 
specific heats, the status of Tsallis statistics, the meaning of equilibrium, and more.  That 
said, some answers have been sketched, and we have (I hope) learned something about 
how a thermodynamic description of the world arises.  To a large extent I think what we 
have learned vindicates the way Landau and Lipfshitz begin their magisterial treatment of 
statistical mechanics.  They view equilibrium statistical mechanics, and hence 
thermodynamics, as a description that emerges when certain systems on particular spatial 
and temporal scales become approximately extensive. 

It bears mentioning that many possible topics have been left out.  Of special note are the 
following.  Self-gravitating systems are often said to be non-ergodic (see, e.g., Mukamel, 
Ruffo and Schreiber 2005).  Since ergodicity is often said to be the dynamical foundation 
upon which thermodynamics depends, it's worth an investigation to see if self-gravitating 
systems enjoy the kind of dynamics (ergodic or not) that could sustain a thermodynamic 
description.  Also, most of this paper has been written from the perspective of 
conventional Gibbsian statistical mechanics.  However, when foundational questions 
arise, many authors prefer to think in terms of Boltzmann's picture (see, e.g., Lebowitz 
1993).  How would someone taking as fundamental the Boltzmann entropy – essentially 
the logarithm of the volume of 6N-dimensiomnal phase space corresponding to the 
macrostate of interest – understand the puzzles surrounding self-gravitating systems? 
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Let me finish by returning to the original question: does thermodynamics hold of self-
gravitating systems?  The answer is unexpectedly unclear.  The answer hangs on our 
evaluation of the means of regaining extensivity surveyed in Section 8.  For instance, we 
saw that extensivity could be regained in the mean field limit.  In this limit some but not 
all thermodynamic relationships will hold.  So even if we find this limit to be 
unproblematic, our answer depends on a prior choice of what constitutes 
thermodynamics.  Putting this semantics issue aside, should we really say that self-
gravitating systems obey thermodynamics even if they only partially do in the mean field 
limit? We have begun we a very clear question and proceeded to muddy it up.  
Sometimes – and I hope this is one of those times – this is a sign of progress. 
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