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distinguish between “‘good singularities,” with which we can peacefully coexist, and
“bad singularities,” with which even detente is impossible. He thought that all
singularities must be excluded from a complete sdentific theory (see chapter 1).

33. Let §: £ — M denote the imbedding of X as a Cauchy surface of M, &ap and
let ‘? M — M and P: M — M denote the isometric imbeddings of M, g,, into A1, § Par
and M Zap respectively. Chrusciel and Isenberg (1993) note that if the Cauchy surfacc
¥(Z) has a privileged status, then one might not want to count M, 3, and M La

as equivalent under an isometry ¢: M- M if @ moves X in the sense that
po oy =Foy.

34. See Wald (1984a) for a discussion of the positive mass proof. Negative mass
Schwarzschild spacetime (see note 14) has negative ADM mass and a naked
singularity. It is not a counterexample to the positive mass theorem, which requires
that the initial hypersurface be singularity free. Nor, as noted above, would this
example be regarded as a violation of the form of cosmic censorship that excludes only
those naked singularities that develop from regular initial data, since the singularity
has heen present for all times.

35. See chapter 6 for a discussion of the nature of physical laws.

36. A determinism maximal spacetime is zlso known in the literature as a
hole-free spacetime. Being hole free does not ental being globally hyperbolic (think
of Godel spacetime). Nor does the implication go in the opposite direction (think of
a truncated version of Minkowski spacetime with all of the points such that ¢t = 1997
removed). However, a globally hyperbolic and irextendible spacetime is necessarily
hole free.

37. See chapter 2 for a discussion of this matter.

4

Supertasks

4.1 Introduction

Is it possible to perform a supertask, that is, to carry out an infinite
number of operations in a finite span of time? In one sense the answer is
obviously yes since, for example, an ordinary walk from point a to point 4
involves crossing an infinite number of finite (but rapidly shrinking) spatial
intervals in a finite time. Providing a criterion to separate such uninteresting
supertasks from the more interesting but controversial forms is in itself no
easy task,’ but there is no difficulty in providing exemplars of what
philosophers have in mind by the latter. There is, for instance, the Thomson
lamp (Thomson 1954-55). At { = 0 the lamp is on. Between t = 0 and ¢ = 1/2
the switch at the base of the lamp is pressed, turning the lamp off. Between
t=1/2 and ¢t = 3/4 the switch is pressed again, turning the lamp on. Etcetera.
The upshot is that an infinite number of presses are completed by ¢ = 1. Then
there is the super m machine. Between ¢ =0 and ¢ = 1/2 it prints the first
digit of the decimal expansion of . Between ¢ = 1/2 and ¢ = 3/4 it prints the
second digit. Etcetera. The result is that the complete expansion has been
printed at / = 1. More interestingly from the point of view of mathematical
knowledge there is the Plato machine which checks some unresolved existential
conjecture of number theory for ‘1” during the first half-second, for ‘2 during
the next quarter-second. Etcetera. The result is that the truth value of the
conjecture is determined at the end of one second.

Thomson thought that such devices are logically or conceptually impos-
sible. The operation of the Thomson lamp (a misnomer if Thomson were
correct) entails that (i) for any ¢ such that 0 <¢< 1, if the lamp is off
at ¢, then there is a ¢’ such that ¢ <t <1 and the lamp is on at ¢, and
(ii) for any ¢ such that 0 < ¢ < 1, if the lamp is on at ¢, then there is a ¢ such
that { < ¢/ < | and the lamp is off at /. Thomson thought that it followed
from (i) that the lamp cannot be off at =1 and from (ii) that the lamp
cannot be on at { = 1, a contradiction since it is assumed that the lamp must
be in one or the other of these states at any instant. The fallaciousness of the
argument was pointed out by Benacerraf (1962).

Others have held that though conceptually possible such devices are

103



104 BANGS, CRUNCHES, WHIMPERS, AND SHRIEKS

physically impossible. Benacerraf and Putnam (1983, p. 20), for example,
seem to have thought that these devices are kinematically impossible due to
the fact that relativity theory sets ¢ (the velocity of light) as the limit with
which the parts of the device can move. Again, however, the impossibility is
not as obvious as claimed. A demonstration is needed to rule out as a
kinematic possibility that the operation of the device is arranged so that with
each successive step the distance the parts have to move (as in an ordinary
stroll from « to &) shrinks sufficiently fast that the bound ¢ is never violated.
Of course, even if the device can be shown to pass muster at the kinematic
level, it may still fail to satisfy necessary conditions for a dynamically possible
process (see Grinbaum 1968, 1969 for a discussion).

I have nothing new to add to this discussion here.> Rather, my focus will
be on the ways that the relativistic nature of spacetime can be exploited so
as to finesse the accomplishment of a supertask. Very crudely, the strategy is
to use a division of labor. One observer has available to her an infinite amount
of proper time, thus allowing her to carry out an infinite task in an
unremarkable way. For example, she may check an unresolved conjecture in
number theory by checking it for ‘1’ on day one, for ‘2” on day two, etc., ad
infinitum. (Or if, as the numerals increase, she needs increasing amounts of
time to complete the check, she can allow hersell f(r) days to check the
conjecture for ‘n’, where f(n) is any increasing function of zn as long as
f(n) < oo for all n.) A second observer, who uses up only a finite amount of
his proper time, is so situated that his past light cone contains the entire world
line of the first observer. The second observer thus has direct causal access to
the infinite computation of the first observer, and in this way he obtains
knowledge of the truth value of the conjecture in a finite amount of time. If
this is genuinely possible in relativity theory, there is an irony involved. Prima
facie relativity might have been thought to make supertasks more difficult if
not impossible by imposing kinematic limitations on the workings of Thomson
lamps, Plato machines, and the like. But on further analysis relativity theory
seems to open up a royal road that leads to the functional equivalent of the
accomplishment of a supertask. The rough sketch just given contains an
unjustified optimism. We will see that relativistic spacetimes do provide
opportunities for carrying out the functional equivalents of supertasks, but
we will also see that they do so at a price. One approach is to set the supertask
in a well-behaved spacetime (see section 4.2). Here a double price has to be
paid; for the second observer who tries to take advantage of the infinite labor
of the first observer must submit himself to unbounded forces that end his
existence, and in any case he never observes the completion of the infinite
labor at any definite time in his existence.

Alternatively, both of these difficulties can be overcome by exploiting
spacetimes with unusual structures which I will dub Malament—Hogarth
spacetimes. A large part of this chapter will be devoted to articulating the
senses in which these spacetimes are physically problematic. As Hogarth has
already shown, they are not globally hyperbolic (Lemma 4.1, section 4.3), so
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that they violate strong cosmic censorship. And they may also violate other
requirements one would expect a physically realistic spacetime to fulfill
(section 4.6). It will turn out that the failure of global hyperbolicity occurs
in a way which necessarily defeats attempts to control disturbances to the
signaling between the first and second observer from singularities and other
sources. This signaling will prove to be problematic in other ways. It may
demand that the second observer pursue his own mini-supertask in his
neighborhood of spacetime, forfeiting the advantage that a Malament—
Hogarth spacetime was supposed to offer (section 4.7). Again, the signaling
will be associated with indefinite blueshifts (Lemma 4.2, section 4.5), so that
the energy of the signals can be indefinitely amplified, threatening to destroy
the second observer who receives them.

4.2 Pitowsky spacetimes

The first published attempt to make precise the vague ideas sketched in section
4.1 for using relativistic effects to finesse supertasks was that of Pitowsky
(1990). His approach is encapsulated in the following definition.

DerinrTION 4.1
M, gu is a Pitowsky spacetime just in case there are future-directed timelike
half-curves y,, 7, € M such that |, dr = o, {,, dr < 00, and y; = I" (y,).

The blandest relativistic spacetime of all, Minkowski spacetime, is Pitowskian,
as shown by Pitowsky’s own example. (It seems a safe conjecture that this
example can be generalized to show that any relativistic spacetime that
possesses a timelike half-curve of infinite proper length is Pitowskian.) Choose
an inertial coordinate system (x,¢). Let y; be the timelike half-geodesic
x(1) = constant, 0 < ¢ < +00. Choose y, to be a timelike half-curve that
spirals around y, in such a way that it keeps y, in its causal shadow and that
its tangential speed is u(f) = [1 — exp(—2¢)]"/2, ¢ = 1. The proper time for
72 is dt = exp(—1) dl, so that [,,dt =1. Those familiar with the “twin
paradox’’ may wish to take this example as the extreme case of the paradox
with y, as the ultimate traveling twin who ages biologically only a finite
amount while his stay-behind twin ages an infinite amount. But admittedly
this example does not conform to the usual twin paradox scenario where the
twins hold a final reunion.
Pitowsky tells the following story about this example.

While [the mathematician] M [y,] peacefully cruises in orbit, his graduate
students examine Fermat’s conjecture one case after the other. ... When
they grow old, or become professors, they transmit the holy task to
their own disciples, and so on. If a counterexample to Fermat’s conjecture
is ever encountered, a message is sent to [A{]. In this case M has a fraction
of a second to hit the brakes and return home. If no message arrives, M
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disintegrates with a smile, knowing that Fermat was right after all. (Pitowsky
1990, p. 83)

(The example is now somewhat dated since a proof of Fermat’s last theorem
has been offered. However, some lingering doubts may remain since the
purported proof is over 200 pages. In any case, the punch of Pitowsky’s story
can be preserved by substituting for Fermat’s theorem any unresolved
conjecture of number theory with a prenex normal form consisting either of
all universal quantifiers or else all existential quantifiers. Or the logician may
wish to contemplate the problem of deciding for a formal system strong
enough for arithmetic whether or not a given well-formed formula is a
theorem.)

There are two things wrong with this story. The first concerns the notion
that “M [y,] cruises peacefully in orbit.” For ease of computation, assume
that the mathematician y, undergoes linear acceleration with u(¢) as before,
The magnitude of acceleration a(t) =: (4,(()4°(t))'/?, where A® is the four-
vector acceleration, is exp(#)/[1 — exp(—2¢)]"/2, which blows up rapidly. (To
stay within a linearly accelerating y,’s causal shadow, 7, would also need to
accelerate. But p;’s acceleration can remain bounded. Indeed, 7, can
undergo constant (“Born”) acceleration, which guarantees that y,’s velocity
approaches the speed of light sufficiently slowly that its proper length is
infinite.) Thus, any physically realistic embodiment of the mathematician will
be quickly crushed by g-forces. The mathematician disintegrates with a
grimace, perhaps before learning the truth about Fermat’s conjecture. What
is true in this example is true in general since any ultimate traveling twin in
Minkowski spacetime must have unbounded acceleration. If the ultimate
traveling twin moves rectilinearly and has an upper bound to his acceleration,
then another traveler, Born accelerated at this upper bound, would achieve
equal or greater velocity at each instant and therefore age less. But this Born
accelerated traveler’s world line has infinite proper length. Therefore the
rectilinearly accelerated traveller must have no upper bound to his acceleration
if he is to have finite total proper time. This result holds a fortiori for the
general case of a traveler in curvilinear motion, for part of his acceleration
will be transverse to the direction of motion, thus generating no velocity over
time and no resultant clock slowing.

The second and conceptually more important difficulty with Pitowsky’s
story concerns the claim that the mathematician y, can use the described
procedure to gain sure knowledge of the truth value of Fermat’s conjecture.
If Fermat was wrong, y, will eventually receive a signal from y; announcing
that a counterexample has been found, and at that moment 7, knows that
Fermat was wrong. On the other hand, if Fermat was right, y, never receives
a signal from y,. But at no instant does y, know whether the absence of a
signal is because Fermat was right or because y; has not yet arrived at a
counterexample. Thus, at no definite moment in his existence does y, know
that Fermat was right. The fictitious mathematical sum of all of y,’s stages
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knows the truth of the matter. But this is cold comfort to the actual
non—m.ath-ematical V2. By way of analogy, if your world line yis a timeliké
geDdCS.]C in Minkowski spacetime and you have drunk so deep from the
fountain of youth that you live forever, then 7~ (y) is the entirety of Minkowsk;
spacetime. So the fictitious sum of every stage of you can have direct causa]
knowledge of every event in spacetime. But at no definite time does the actual
you possess such global knowledge.

4.3 Malament-Hogarth spacetimes

M‘alan}ent (1988) and Hogarth (1992) sought to solve the conceptual problem
with Pitowsky’s example by utilizing a different spacetime structure,

DerFINITION 4.2

M, Sab is a Malament—Hogarth Spacetime just in case there is a timelike
half-curve y; = M and a point £ € M such that jm dt=co and y, c [~ (p).
This definition contains no reference to a receiver y,. But if M, g, is a
Malament-Hogarth (hereafter, M-H) spacetime, then there w,illabbe a
future-directed timelike curve y2 from a point g€ (p) to p such that
J'),z‘q,p,'d‘r < 00, where ¢ can be chosen to lie in the causal future of the past
endpoint of ;. Thus, if y; proceeds as before to check Fermat’s conjecture
¥, can k}’lOW for sure at event p that if he has received no signal from }'1’
announcing a counterexample, then Fermat was right.

. Such arrangements can also be used to “eflectively decide” membership
In a recursively enumerable but non-recursive set of integers.®> To decide
whether Or not a given z is a member, 7, proceeds to enumerate the members
.Of the set. By assumption, this can be done effectively. As each new member
1s generated, y; checks to see whether it is equal to n. This too can be done
effectively. y, sends a signal to y, just in case she gets a match. Consequently,
72 knows that 7 is a member precisely if he has received a signal by the time
of the M—H event.

- These scenarios cannot be carried out in Minkowski spacetime, as follows
rom

Lemma 4.1 dn M-H spacetime is not globally hyperbolic.

A formal proof of Lemma 4.1 was given by Hogarth (1992). A simple informal
proof follows from the facts that a globally hyperbolic spacetime M, g,
contains a Cauchy surface and that a spacetime with a Cauchy surface can
be part‘itioncd by a family of Cauchy surfaces. Suppose for purposes of
COI-ltradICti()l'l that M, g,. is both globally hyperbolic and contains an M—H
Point p € M, i.e., that there is a future-directed timelike half-curve y such that
?Y< I (p) and [, dr = c0. Choose a Cauchy surface £ through p, and extend
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Fig. 4.1 A toy Malament-Hogarth spacetime

7y maximally in the past. This extended y’ is also contained in /™ (p). Since y’
has no past or future endpoint, it must intersect X. But then since there is a
timelike curve from the intersection point to p, X is not achronal and cannot,
contrary to assumption, be a Cauchy surface.*

What of the problem in Pitowsky’s original example that the receiver y,
has to undergo unbounded acceleration? In principle, both y; and y, can be
timelike geodesics in at least some M-H spacetimes. The following toy
example illustrates the point and also serves as a useful concrete example of
an M—H spacetime. Start with Minkowski spacetime R*, 7,, and choose a
scalar field Q which has value 1 outside of a compact set C (see Fig. 4.1) and
which goes rapidly to + 00 as the point r is approached. The M—H spacetime
is then M, g, where M = R* — r and g,, = Q*1,,. Timelike geodesics of 1,
in general do not remain geodesics in g,,, but Q can be chosen so that y, is
a geodesic of g, (e.g., if ¥, is a geodesic of 7, choose an Q with y, as an
axis of symmetry).

4.4 Paradoxes regained?

Consider again the super © machine which is supposed to print all the digits
in the decimal expansion of @ within a finite time span. Even leaving aside
worries about whether the movement of the parts of the machine can be made
to satisfy obvious kinematic and dynamic requirements, Chihara (1965)
averred that there is something unintelligible about this hypothetical machine.

The difficulty, as I see it, is not insufficiency of time, tape, ink, speed, strength
or material power, and the like, but rather the inconceivability of how the
machine could actually finish its supertask. The machine would supposedly
print the digits on tape, one after another, while the tape flows through the
machine, say from right to left. Hence, at each stage in the calculation, the
sequence of digits will extend to the left with the last digit printed being “at
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center.” Now when the machine completes its task and shuts itself off, we
should be able to look at the tape to see what digit was printed last. But if

the machine finishes printing all the digits which constitute the decimal
expansion pi, no digit can be the last digit printed. And how are we to
understand this situation? (Chihara 1965, p. 80)

Note first that the baldest form of Chihara’s worry does not apply to the
setup that has been imagined for M—H spacetimes; for the tape will not be
available for y,’s inspection since y; goes crashing into a singularity or
disappears to infinity. However, it might seem that a more sophisticated
version of Chihara’s conundrum can be mapped onto the M—H set up as
follows. y;, who has available to her an infinite amount of proper time, prints
the digits of 7, say, one per second. And at the end of each step she sends a
light signal to y, announcing the result. y, has a receiver equipped with an
indicator which displays ‘even’ or ‘odd” according as the case may be. By
construction there is a p € y, at which y, has received all of the signals from
7:. One can then ask: What does the indicator read at that moment?

Any attempt to consistently answer this query fails. How the failure is
reflected in any attempted physical instantiation will depend on the details
of the physics—in one instantiation the indicator device will burn out before
the crucial moment, in another the indicator will continue to display but the
display will not faithfully mirror the information sent from 7;, etc. But
independently of the details of the physics, we know in advance that the
functional description of the device is not self-consistent. Does this knowledge
constitute a general reductio of the possibility of using M—H spacetimes to
create the functional equivalents of Plato machines? No, for the inconsistency
here can be traced to the conditions imposed on one component of the n
machine—the receiver—indicator—and such conditions are not imposed in
mimicking Plato machines.

If the M—H analogue of the super m machine is to operate as intended,
then the receiver—indicator must satisfy three demands: (a) the indicator has
a definite state for all relevant values of its proper time t, (b) the indicator
is faithful in the sense that, if it receives an odd/even signal at 7, then it
instantly adopts the corresponding odd/even indicator state, and (c) the
indicator does not change its state except in response to a received signal in
the sense that if 7, is a time at which no signal is received, then the indicator
state at T, is the limit of indicator states as T approaches t,; from below. These
demands are supposed to guarantee that at the crucial moment the indicator
displays the parity of the “last digit” of 7. That such a component is possible
by itself leads to contradictions if it is assumed that the receiver—indicator
device is subject to infinitely many alternating signals in a finite time. The
limit required by (c) does not always exist, contradicting (a). I take the
impossibility of such a component to be the lesson of forlorn attempts to
construct an M—H analogue of the super © machines.

Denying the use of such functionally inconsistent devices will not affect
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attempts to construct M—H analogues of Plato machines and to use them to
gain new mathematical knowledge. The computer y, is an infinity machine
in the innocuous sense that it performs an infinite number of operations in
an infinite amount of proper time. I see no grounds for thinking that such
machines involve any conceptual difficulties unless they are required to
compute a non-existent quantity. The uses to which I will put them make no
such demand. Similarly, a conceptually non-problematic receiver—indicator
device can be coupled to the computer through M—H spacetime relations in
order to determine the truth values of mathematical conjectures. To flesh out
the suggestion already made above, imagine, as in Pitowsky’s example, that
7, is the world line of a computer which successively checks a conjecture of
number theory for ‘1°, for ‘2°, etc. Since it has available to it an infinite
amount of proper time the computer will in the fullness of time check the
conjecture for all the integers. It is arranged that y; sends a signal to y, if
and only if a counterexample is found. y, is equipped with a receiver and an
indicator device that is initially set to ‘true’ and which retains that state
unless the receiver detects a signal, when the indicator shifts to “false’ and the
receiver shuts off. By reading the display at the M—H point, 7, can learn
whether or not the conjecture is true. Although I can give no formal proof
of the consistency of this functional description, I see no basis for doubt.
However, I will show below that attempts to physically instantiate this
functional description run into various difficulties. But the difficulties have

nothing to do with the paradoxes and conundrums of Thomson lamps and
the like.

4.5 Characterization of Malament—Hogarth spacetimes

It was seen in section 4.3 that M—H spacetimes are not globally hyperbolic
and thus violate Penrose’s version of strong cosmic censorship. The converse
is generally not true: some spacetimes that are not globally hyperbolic can
fail to be M—H spacetimes. (Trivial example: Minkowski spacetime with a
closed set of points removed does not contain a Cauchy surface but is not an
M-H spacetime.) Some M—H spacetimes are acausal. Godel spacetime 1s
causally vicious in that for every point pe M (=R*) there is a closed
future-directed timelike curve through p (see chapter 6). In fact, for any p € M,
I"(p) = M. Since Gédel spacetime contains timelike half-curves of infinite
proper length, every point is an M—H point. I will not discuss such acausal
spacetimes here. The reason is not because I think that the so-called paradoxes
of time travel show that such spacetimes are physically impossible; indeed, I
will argue just the opposite in chapter 6. But such paradoxes do raise a host
of difficulties which, though interesting in themselves, only serve to obscure
the issues about supertasks T wish to emphasize.

Therefore, in what follows I will restrict attention to causally well-
behaved spacetimes. In particular, all of the spacetimes I will discuss are
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stably causal, which entails the existence of a global time function (see chapter
6). I claim that among such spacetimes satisfying some subsidiary conditions
to be announced, the M—H spacetimes are physically characterized by
divergent blueshifts. The intuitive argument for this assertion is straight-
forward. During her lifetime, y; measures an infinite number of vibrations of
her source, each vibration taking the same amount of her proper time. ¥,
must agree that an infinite number of vibrations take place. But within a finite
amount of his proper time, 7, receives an infinite number of light signals from
y,, each announcing the completion of a vibration. For this to happen y;
must receive the signals in ever decreasing intervals of his proper time. Thus,
7, will perceive the frequency of 7,’s source to increase without bound. (This
argument does not apply to acausal M-H spacetimes. The simplest example
to think about is the cylindrical spacetime formed from two-dimensional
Minkowski spacetime by identifying two points (xy, t;) and (x5, ;) just in
case x, = x, and {; = {, modulo 7. y, can be chosen to be some finite timelike
geodesic segment and y, can be a timelike half-geodesic that spirals endlessly
around the cylinder. The light signals from y; may arrive at y, all mixed up
and not blueshifted.)

The main difficulty with this informal argument, as with all of the early
literature on the redshift/blueshift effect (see Earman and Glymour 1980) 1s
that the concept of frequency it employs refers to the rate of vibration of the
source at y; and to the rates at which y, sends and 7, receives signals. But
the effect actually measured by 7, depends on the frequency of the light signal
(photon) itself. Thus, we need to calculate the blueshift using the definition
of the emission frequency of a photon from a point p; €y, as @, = — (R W) g
and the measured frequency of the photon as received at the point g, €7, as
w, = — (k,13")| p,» where the timelike vectors 7;* and V5* are respectively the
normed tangent vectors to the world lines 7, and 7,, and the null vector £*
is the tangent to the world line of the photon moving from the first to the
second observer (see Fig. 4.2). Then the redshift/blueshift effect is given by
the ratio

©r _ (k) "
601 (ka V;a) |p1

The following key fact is established in the appendix at the end of this
chapter.

Limma 4.2. Let M, go be a Malament—Hogarih spacetime containing a timelike
half-curve y, and another timelike curve y, from point q to point p such that f,, dt = oo,
L;Z dt < o0, and y, < 1™ (p). Suppose that the family of null geodesics from vy to V3
Sforms a two-dimensional integral submanifold in which the order of emission from 7,
matches the order of reception at y,. If the photon frequency @, as measured by the sender
Y, is constant, then the time-integrated photon frequency _f“ W, dt as measured by the
receiver 9, diverges as p, approaches p.
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Fig. 4.2 The redshift/blueshift effect

Parameterize y, by a ¢ such that y,’s past endpoint ¢ corresponds to
t=0 and p corresponds to {= 1. Then it follows from Lemma 4.2 that
lim, , ; @,(f) = oo if the limit exists. If not, then lim, , ; @"®(¢) = 00, where
@™ (f) =lub{w,(¢): 0 < ¢’ < ¢}. Thus, one can choose on y, a countable
sequence of points approaching p such that the blueshift as measured by y,
at those points diverges. Typically this behavior will hold for any such
sequence of points on y,, but there are some mathematically possible M—H
spacetimes where 7, measures no red or blueshift at some sequence of points
approaching p.

The following example (due to R. Geroch and D. Malament) illustrates
this counterintuitive feature. As in the toy model in Fig. 4.1, start with parallel
timelike geodesics of Minkowski spacetime. Parameterize y, by the proper
time 7 of the Minkowski metric and adjust the curve so that the past endpoint
corresponds to 7 =0 and r corresponds to T=1. At the points on 7y,
corresponding tot = 1, = 1 — (3/4) (1/2") draw a sphere of radius 7, = 1/2"*3
(as measured in the natural Euclidean metric). On the nth sphere put a
conformal factor Q, which goes smoothly to 1 on the surface of the sphere
and which has its maximum value at the point on y; corresponding to t,.
Construct the €, such that the proper time along y; in the conformal metric
Q%4 is infinite. For instance, if 7% is the part of y; within the nth sphere,
set , so that I?'f Q,dt = 1. The result is an M—H spacetime. But at the
points on y, that receive photons from the points on y; corresponding to
T =1/2,3/4, 7/8, etc., there is no blue- or redshift.

While mathematically well defined, such examples are physically patho-
logical. In particular, I do not know of any examples of M—H spacetimes
which are solutions to Einstein’s field equations for sources satisfying standard
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energy conditions (see section 4.6) and which have the curious feature that
the blueshift as measured by 7y, diverges along some but not all sequences of
points approaching the M—H point. Thus, although the slogan that M-H
spacetimcs involve divergent blueshifts is literally incorrect, it is essentially
correct in spirit.

It may help to fix intuitions by computing the blueshift in some concrete
examples. For the toy model pictured in Fig. 4.1 the result is

E’E — % = Qp (4_2)
w; £ 2

P2
This ratio diverges as y, approaches the (missing point) r and y, approaches
the M—H point p.

Another stably causal M—H spacetime is obtained by taking the universal
covering of anti-de Sitter spacetime (Hawking and Ellis 1973, pp. 131-134).
Suppressing two spatial dimensions, the line element can be written as
ds? = dr* — (cosh? 7) di*. Following Hogarth (1992) we can take y, to be given
by r = r, = constant and y, to be given by a solution to dr/dt = cosh r/ﬁ
(see Fig. 4.3). The blueshift is

w; cosh ry (43)

@y cosh rg(ﬁ — 1)

which diverges as r, » 00 and p, approaches the M—H point p.

We can also pose the converse question as to whether a divergent blueshift
behavior indicates that the spacetime has the M—H property. The answer is
positive in the sense that the proof of Lemma 4.2 can be inverted. .

The fact that an M—H spacetime gives an indefinitely large blueshift
for the photon frequency implies that the spacetime structure acts as
an arbitrarily powerful energy amplifier. This might seem to guarantee

A
i

7

Fig. 4.3 Anti-de Sitter spacetime is a Malament-Hogarth spacetime
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unambiguous communication from y, to y,. But this first impression neglects
the fact that a realistic instantiation of y; will have thermal properties. The
slightest amount of thermal radiation will be amplified indefinitely, which
will tend to make communication impossible. In order not to destroy the
receiver at y,, y; will have to progressively reduce the energy of the photons
she sends out. This means that there will be a point at which the energy of
the signal photons will be reduced below that of the thermal noise photons,
The indefinite amplification of the thermal noise will in any case destroy the
receiver. - Perhaps this difficulty can be met by cooling down y, so as to
eliminate thermal noise or by devising a scheme for draining off the energy
of the signal photon while in transit. But even assuming a resolution of this
difficulty, still further problems dog the attempt to use M—H spacetimes to
accomplish supertasks.

4.6 Supertasks in Malament-Hogarth spacetimes

Are supertasks in Malament—Hogarth spacetimes to be taken seriously? The
question involves three aspects. The first concerns whether M—H spacetimes
are physically possible and physically realistic. As a necessary condition for
physical possibility, general relativists will want to demand that the spacetime
be part of a solution to Einstein’s field equations for a stress—energy tensor
T satisfying some form of energy condition, weak, strong, or dominant (see
chapter 3). The toy model of Fig. 4.1 can be regarded as a solution to
Einstein’s field equations with vanishing cosmological constant A by computing
the Einstein tensor G,;(g) and then defining 7,, =: (1/87)G,,. But as conjec-
tured in chapter 3, such models may be ruled out by the energy conditions.
Anti-de Sitter spacetime, another M—H spacetime, can be regarded as a
vacuum solution to Einstein’s field equations with A = R/4, R (<0) being
the curvature scalar; then the energy conditions are trivially satisfied.
However, if it is required that A = 0, anti-de Sitter spacetime is ruled out by
the strong energy condition if a perfect fluid source is assumed (see chapter 3).

None of these concerns touch Reissner—Nordstrom spacetime which is the
unique spherically symmetric electrovac solution of Einstein’s field equations
with A = 0 (Hawking and Ellis 1973, pp. 156-161). Since this spacetime is
an M-H spacetime, at least some M-H spacetimes meet the minimal
requirements for physical possibility.

It is far from clear, however, that M—H spacetimes meet the (necessarily
vaguer) criteria for physically realistic spacetime arenas. For one thing, it was
seen in the preceding section that M-H spacetimes involve divergent
blueshifts, which may be taken as an indicator that these spacetimes involve
instabilities. Such is the case with Reissner—Nordstrom spacetime, where a
small perturbation on an initial value hypersurface £ (see Fig. 4.4) can
produce an infinite effect on the future Cauchy horizon H*(Z) of ¥ (see
Chandrasekhar and Hartle 1982).
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singularity singularity

HY(Z)
~

Fig. 4.4 Reissner—Nordstrom spacetime is a Malament-Hogarth spacetime

For another thing, various M—H spacetimes run afoul of one or other
versions of Penrose’s cosmic censorship hypothesis. By Lemma 4.1 all M—H
spacetimes violate strong cosmic censorship, and many examples of M—H
spacetimes violate weaker versions as well. Thus, evidence that cosmic
censorship holds for physically reasonable spacetimes is ipso facto evidence
against the physical reasonableness of M—H spacetimes. Conversely, one
might take the rather bizarre scenarios that can be concocted in M—-H
spacetimes as grounds for thinking that a cosmic censor should be at work.
But then again, those with a taste for the bizarre may hope that cosmic
censorship fails just so that they can own the functional equivalent of a Plato
machine.

I now turn to the second aspect of the question of how seriously to
take the possibility of completing supertasks in M—H spacetimes. This aspect
concerns whether y; can be implemented by a physically possible/physically
realistic device which, over the infinite proper time available to it, carries out
the assigned infinite task. Once again the question is made difficult by the
fact that there is no agreed upon list of criteria that identify physically realistic
devices. I will make the task of tackling this question tractable by confining
attention to dynamical constraints that physically realistic y; should satisfy.
(One doesn’t have to worry about dynamical constraints on y, since typically
Y2 can be chosen to be a geodesic.) Minimally, the magnitude of acceleration
of ¥; must remain bounded, otherwise any device that one could hope to
build would be crushed by g-forces. This condition is satisfied in the anti-de
Sitter case (Fig. 4.3) where a(r,) = \/2 [exp(2r,) — 1]/[exp(2r;) + 1], which
approaches ﬂ as . — 0. However, we must also demand a finite bound on

the total acceleration of y;: TA(y,) = [,, a dt. For even with perfectly efficient
rocket engines, the final mass m, of the rocket and the mass my,, of
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the fuel needed to accelerate the rocket must satisfy (see the appendix to this
chapter)

e
< exp(—TA(71)) (4.4)
myg + mfuel

Thus if TA(y,) = o0 an infinite amount of fuel is needed for any finite
payload. In the anti-de Sitter case, dr, = dt so that TA(y,) = o0, and the
demand fails. In the toy model of Fig. 4.1 the demand is met since
TA(y,) = 0, y, being a geodesic; but the spacetime involved was ruled out as
not physically possible. In Reissner—Nordstrém spacetime a timelike geodesic
v, can be chosen to start on the time slice Z (see Fig. 4.4) and to go out to
future timelike infinity i*.> And y, < I (p) for an appropriate point p € H(Z).
But again there are reasons to regard this spacetime as not being physically
realistic.

Finally, since a physically realistic device must have some finite spatial
extent, we are really concerned not with a single world line y, but with a
congruence I'; of world lines. Even if T is a geodesic congruence it cannot be
instantiated by a physically realistic computer (say) unless the tidal forces it
experiences remain bounded. Since the tidal forces are proportional to the
Riemann curvature tensor,® one can satisfy this demand in Reissner—Nordstrom
spacetime, which is asymptotically flat in the relevant region. One simply
starts the geodesic congruence sufficiently far out towards spatial infinity and
has it terminate on future timelike infinity ¢*.

To summarize the discussion up to this point, it is not clear that any M—H
spacetime qualifies as physically possible and physically realistic. But to the
extent that M—H spacetimes do clear this first hurdle, it seems that the role of
7, can be played by a world line or world tube satisfying realistic dynamical
constraints. However, Pitowsky (1990) feels that, for other reasons, y; cannot
be instantiated by a computer that will carry out the assigned infinite task.
I will take up his worry in section 4.8 below. Before doing so I turn to the
third aspect of whether M—H can be taken seriously. It concerns discrimina-
tions that the receiver y, must make.

4,7 Malament-Hogarth spacetimes and
unresolved mathematical conjectures

Can Malament—Hogarth spacetimes be used to gain knowledge of the truth
values of unresolved mathematical conjectures? Suppose now for sake of
discussion that some M—H spacetimes are regarded as physically possible and
physically realistic and that in these arenas there are no barriers to a physically
possible and physically realistic instantiation ofy; by a computer which carries
out the task of checking Fermat’s last theorem or some other unresolved
conjecture of number theory. Nevertheless there are reasons to doubt that y,
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can use 7,’s work to gain genuine knowledge of the truth value of the
conjecture. The pessimism is based on a strengthening of Lemma 4.1.

LemMa 4.3, Suppose that p € M is a M—H point of the spacetime M, g,y (that is,
there is a future-directed timelike half-curve y, = M such that Ih dt = o0 and
v, © I7(p)). Choose any connected spacelike hypersurface T < M such that y; < I s
Then p is on or beyond H* ().

Proor: If p € int[D*(Z)] then there is a ¢ € D* () which is chronologically
preceded by p. M’ = (I"(q) n I*(Z)) € D" (Z), and the smaller spacetime
M’, ga| s is globally hyperbolic. Choose a Cauchy surface Z' for this smaller
spacetime which passes through p. Since y; = M" we can proceed as in the
proof of Lemma 1 to obtain a contradiction.

Lemma 4.3 is illustrated by the Reissner—Nordstrém spacetime (Fig. 4.4).
Any M-H point involved with a y; starting in region I must lie on or beyond
FE ().

Think of ¥ as an initial value hypersurface on which one specifies initial
data that, along with the laws of physics, prescribes how the computer ¥, is
to calculate and how it is to signal its results to y,. Since by Lemma 4.3 any
M-H point p € y, must lie on or beyond H* () for any appropriate Z, events
at p or at points arbitrarily close to p are subject to non-deterministic
influences. In typical cases such as the Reissner—Nordstrém spacetime
illustrated in Fig. 4.4 there are null rays which pass arbitrarily close to any
pe H' (Z) and which terminate in the past direction on the singularity. There
is nothing in the known laws of physics to prevent a false signal from emerging
from the singularity and conveying the misinformation to y, that a counter-
example to Fermat’s conjecture has been found.” (y, need not measure an
infinite blueshift for photons emerging from the singularity; at least there is
nothing in Lemma 4.2 or the known laws of physics that entails such a
divergent blueshift.) Of course, the receiver y, can ignore the signal if he
knows that it comes from the singularity rather than from 7;. But to be able
to discriminate such a false signal from every possible true signal that might
come from y;, 7, must be able to make arbitrarily precise discriminations. In
the original situation it was the Plato machine that had to perform a supertask
by compressing an infinite computation into a finite time span. The trick
adopted here was to finesse the problems associated with such a supertask by
utilizing two observers in relativistic spacetime. But we have found that the
finesse also involves a kind of supertask—not on the part of the computer but
on the part of the receiver who tries to use the work of the computer to gain
new mathematical knowledge.

This verdict may seem unduly harsh. If y, is to be sure beforehand
that, whatever y,’s search procedure turns up, he will obtain knowledge of
the truth value of Fermat’s conjecture, then y, must be capable of arbitrarily
precise discriminations. But, it may be urged, if y, is capable of only a finite



118 BANGS, CRUNCHES, WHIMPERS, AND SHRIEKS

degree of precision in his signal discriminations, he may yet learn that
Fermat’s conjecture is false (if indeed it is) if he receives a signal long enough
before the M—H point so that it lies within his discrimination range. This,
however, would be a matter of good fortune. One can pick at random a
quadruple of numbers (%, ¥, 2, 7), 1 = 3, and check whether x" + " = 2" 1If
one is lucky, a counterexample to Fermat’s conjecture will have been found.
But the interest in Platonist computers and their M—H analogues lay in the
notion that they do not rely on luck.

Of course any observer faces the problem of filtering out spurious back-
gound signals from those genuinely sent from the system observed. But it is
usually assumed that sufficiently thorough attention to the experimental setup
could at least in principle control all such signals. What Lemma 4.3 shows,
however, is that no such efforts can succeed even in principle in our case. No
matter how carefully and expansively we set up our experiment—hat is, no
matter how large we choose our initial value hypersurface—we cannot
prevent spurious signals from reaching p or coming arbitrarily close to p.

The problem can be met by means of a somewhat more complicated
arrangement between 7y and 7, by which y; not only sends a signal to y, to
announce the finding of a counterexample but also encodes the quadruple of
numbers that constitutes the counterexample. A false signal may emerge from
the singularity, but y, can discover the falsity by a mechanical check. With
the new arrangement 7y, no longer has to discriminate where the signal came
from since a counterexample is a counterexample whatever its origin.
Unfortunately, 7, may still have to make arbitrarily fine discriminations since
the quadruple sent will be of arbitrarily great size (=number of bits) and
must be compressed into a correspondingly small time interval at y,.

The worry about whethery, can gain knowledge of Fermat’s conjecture
by using ;s efforts also involves the concern about 7,’s right to move from
‘y, has not sent me a signal’ to ‘Fermat’s conjecture is true’. The correctness
of the inference is not secured by the agreement y; and 7, have worked out,
for even with the best will in the world y, cannot carry out her part of the
agreement if events conspire against her. As suggested above, the most
straightforward way to underwrite the correctness of the inference is for there
to be a spacelike X such that y; < D" (Z) and such that initial conditions on
T together with the relevant laws of physics guarantee that 7, carries out her
search task. And if, as is compatible with at least some M-H spacetimes (e.g.,
Reissner—Nordstrom spacetime), the M—H point p can be chosen so that
T c I (p), it would seem that y, could in principle come to know that the
conditions which underwrite the inference do in fact obtain. But the rub is
that p or points arbitrarily close to p may receive a false signal from the
singularity, indicating that conditions are not conducive to y;’s carrying out
her task. If so, y, is not justified in making the inference unless he can
discriminate false signals as such. This, of course, is just another version
of the difficulty already discussed. But the present form does not seem to have
an easy resolution.
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4.8 Can y, carry out the assigned task?

y, is supposed to check an unresolved conjecture of number theory for each
of the integers. By construction, ¥, has time enough. But Pitowsky feels that
7, never has world enough.

The real reason why Platonist computers are physically impossible ezen n
theory has to do with the computation space. According to general relativity
the material universe is finite. Even if we use the state of every single
clementary particle in the universe, to code a digit of a natural number, we
shall very soon run out of hardware. (Pitowsky 1990, p. 84)

In response, I note that general relativity theory does not by itself imply a
spatially or materially finite universe. Further, it was seen that there are
spatially infinite M—H spacetimes, such as Reissner—Nordstrom spacetime,
that are live physical possibilities in the minimal sense that they satisfy
Einstein’s field equations and the energy conditions. A 7, who wanders off
into the asymptotically flat region of this spacetime certainly has space enough
for any amount of hardware she needs to use. But she cannot avail herself of
an unlimited amount of hardware without violating the implicit assumption
of all of the foregoing; namely, that y, and 7, have masses so small that they
do not significantly perturb the background metric. Here Pitowsky’s objection
has some bite.

Perhaps there are solutions to Einstein’s field equations where the
spacetime has the M—H property and there is both space enough and material
enough for a physically embodied computer with an unlimited amount of
computation space.® Pending the exhibition of such models, however, one
must confine oneself to tasks that can be accomplished in an infinite amount
of time but with a finite amount of computation space. Whether there are
such tasks that deserve the appellation ‘super’ remains to be seen.

49 Conclusion

Thomson lamps, super 7 machines, and Platonist computers are playthings
of philosophers; they are able to survive only in the hothouse atmosphere of
philosophy journals. In the end, M-H spacetimes and the supertasks they
underwrite may similarly prove to be recreational fictions for general
relativists with nothing better to do. But in order to arrive at this latter
position requires that one first resolve some of the deepest foundation problems
in classical general relativity, including the nature of singularities and the fate
of cosmic censorship. It is this connection to real problems in physics that
makes them worthy of discussion.

There are also connections to the philosophy of mathematics and
to the theory of computability. Because of finitist scruples, some philosophers
have doubted that it is meaningful to assign a truth value to a formula of
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arithmetic of the form (3x;) (3x,) ... 3w, )F(xy, %3, . . ., %,). It seems to me
unattractive to make the truth of mathematical statements depend on the
contingencies of spacetime structure. The sorts of arrangements considered
above can be used to decide the truth value of assertions of arithmetic with
a prenex normal form that is purely existential or purely universal.® (Fermat’s
last theorem, for example, has a purely universal form.) For such an assertion
71 is set to work to check through the (countably infinite) list of n-tuples of
numbers in search of a falsifier or a verifier according as the assertion to be
tested is universal or existential, and y, reaps from these labors a knowledge
of the truth value of the assertion. But as soon as mixed quantifiers are
involved, the method fails.'® However, Hogarth (1994) has shown how more
complicated arrangements in general relativistic spacetimes can in principle
be used to check the truth value of any arithmetic assertion of arbitrary
quantificational complexity. Within such a spacetime it is hard to see how
to maintain the attitude that we do not have a clear notion of truth in
arithmetic.!!

The computational arrangements between y; and y, envisioned might
also seem to bring into doubt Church’s proposal that effective/mechanical
computability is to be equated with Turing computability or recursiveness,
for apparently y; and y, can in concert obtain a resolution to recursively
unsolvable problems by means that certainly seem to merit the appellations
of ‘effective’ and ‘mechanical’. But putting the matter this way is a little
unfair to Church since any account of effective/mechanical computability that
implies that there are subsets of numbers which can be effectively/mechanically
enumerated, but whose complements cannot be, will be subject to the
one-upmanship of bifurcated supertasks. Perhaps the most illuminating
way to state the moral to be drawn from bifurcated supertasks is that two
levels of computation need to be distinguished: the first corresponding to what
the slave computer y; can do, the second to what y, can infer by having
causal access to all of y,’s labors. Church’s proposal is best construed as aimed
at the first level and as asserting that Turing computability is an upper bound
on what any physical instantiation of y; can accomplish. Read in this way,
there is nothing in present concerns to raise doubts about Church’s proposal.'?

Appendix: Proofs of Lemma 4.2 and Equation 4.4

Proor or Lemma 4.2. The null geodesics from y, to y, form a two-
dimensional submanifold. For each of the null geodesics select an affine
parameter A which varies from 0 at y; to 1 at y,. (This will always be possible
since an affine parameter can be rescaled by an arbitrary linear transforma-
tion.) The null propagation vector £” = (3/04)* satisfies the geodesic equation

KV, k" =0 (A4.1)
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By supposition, these null geodesics form a submanifold. By connecting points
of equal A values, form a family of curves indexed by A that covers the
submanifold and interpolates between y; and y,. Select any parameterization
tof ¥, and propagate this parameterization along the null geodesics to all the
interpolating curves so that each null geodesic passes through points of equal
¢ value. The indices 4 and ¢ form a coordinate system for the two-manifold.
k* and (* = (d/0()° are its coordinate basis vector fields, which entails that
they satisfy the condition [{, £]* = 0 so that

*Vaky — k*Val, =0 (A4.2)

It follows that ({,£%) is a constant along the photon world lines. To show this
it needs to be demonstrated that

2 (k) = VLR =0 (At3)

This is done by computing
KV (Goh") = KO (B*Valy) + Lok Vak” (Ad4)

The second term on the right-hand side of (A4.4) vanishes in virtue of (A4.1).
Equation (A4.2) can then be used to rewrite the first term on the right-hand
side as (*k°V, k, = 3(°V,(k,k®) = 0 since &% is a null vector.

Thus, for a photon sent from y; to 7y, we have k,{{ = k,(5, or
k, V2L = k, V°|(5), where V¥ =:{%/|(%| is the normed tangent vector to the
timelike world line. So from the definition (4.1) of photon frequency ratios
one can conclude that ,|{4| = w,|{4%| which implies that

j ,|C5| dt = J‘ 5|5 dt (A4.5)

or

J W, dt = j W, dt {A4.6)
Y1 Y2

But {, dr = o0 and [,,dt < 0. So if w, is constant along y;, (A4.6) can
hold only if [ w, dr = 0.

Proor or (4.4) (from Malament 1985). If V" is the (normalized) four-
velocity of the rocket and m its mass, the rate at which its energy—momentum
changes is V7V,(mV™"), which must balance the energy-momentum 7" of its
exhaust (it being assumed that the rocket’s motor is the only source of

|y
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propulsion). Thus,
F=V"(V*V,m) + mA" (A4.7)

where A" = V™V V" is the four-acceleration. Since j" is not spacelike,
"7, < 0. Consequently,

—(VPV,m)? + m*a* <0 (A4.8)

which uses V"I, = —1, V"4, =0, and a =: (4"4,)"/*. Furthermore, because
the rocket is using up fuel, V?V,m < 0. Thus,

a< —VPV,(In(m)) = —-a;i (In(m)) (A4.9)
T

So if m; and m, are the initial and final masses of the rocket, integration of
(A4.9) yields

TA(y) < In(m/my) (A4.10)
And since m; = m; + mpq,
_ ™ < exp(—TA®)) (A4.11)
Myt Mypyel

Notes

1. This task is taken up in Earman and Norton (1994).

2. A few new wrinkles are added in Earman and Norton (1994) concerning Ross’s
paradox (see Allis and Koetsier 1991; van Bendegem 1994) and some other paradoxes
of the infinite.

3. A subset of § < N is said to be recursively enumerable (r.e.) just in case it is
the range of a (partial) recursive function f: N — N; informally, this means that there
is an effective procedure for generating the members of 8. § is said to be recursive
if both § and the complement of § are r.e; informally, there is an cffective
procedure for deciding membership in §. Key results on undecidability of formal
systems hinge on there being sets that are r.e. but not recursive.

4. David Malament has pointed out that a quick proof of Lemma 4.1 can be
obtained by using Prop. 6.7.1 of Hawking and Ellis (1973): For a globally hyperbolic
spacetime, if p& 7' (g), then there is a non-spacelike geodesic from ¢ to p whose
length is greater than or equal to that of any other non-spacelike curve from
q to fp. Suppose that ye/ (p) is a timelike half-curve with endpoint ¢ and that
[, &t = 0. Since the endpoint ¢ of y belongs to /™ (p), we could apply the proposition
to p and ¢ if the spacetime were globally hyperbolic. But then a contradiction results,
since whatever the bound on the length of the timelike geodesic from ¢ to p, we could
exceed it by going along y sufficiently far and then over to p. Robert Wald noted
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that an even quicker proof's obtained from the compactness of 7~ () N J 7 (g) together
with strong causality, which are consequences of global hyperbolicity.

5. In Fig. 4.4 i° labels spatial infinity and # " and .#~ respectively label future
and past null infinity.

6. See Wald (1984, pp. 46-47) for a derivation of the formula for geodesic
deviation.

7. One might also worry that a burst of noise from the singularity could swamp
an authentic signal. But since any real signal arrives at y, prior to the singularity
noise, the former is not masked by the latter as long as the receiver can discriminate
between a signal and noise.

8. The considerations raised here are similar to those discussed by Barrow and
Tipler (1986) under the heading of “omega points.”

9. Assuming that the relation quantified over is effectively decidable.

10. Showing this requires a more careful specification of how bifurcated infinity
machines operate; see Earman and Norton (1994).

11. See Farman and Norton (1994) for more discussion of this and related
matters.

12. But there are independent reasons to doubt Church’s proposal; see Earman
(1986) and Pitowsky (1990).
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