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Outline of the argument: I
1 | 11

B Quantum mechanics incompatible with usual Boolean logic of
subsets where elements definitely have a property or not.

B But there is a recently-developed dual logic, the logic of
partitions about indefinite properties that can be made more
definite.

B Obvious thing to check 1s if QM 1s compatible with that other
logic, dual to ordinary subset logic.

B /f QM was also incompatible with the other logic, then one 1s
authorized to push the panic button and:

 abandon interpretation with Copenhagen instrumentalist
approach,

 cling to Boolean logic by postulating a hidden reality of
definite properties with the Bohmians, or

* soar off in the void with exotica like the "many worlds"
interpretation with the Everettians.




Outline of the argument: 11
| | 11l

B But QM fits perfectly with partition logic.

B Key concept 1s old 1dea of objective

indefiniteness. Partition .
information theory) and |

ogic (including logical
1fting program provide

the back story so that olc

| 1dea then gives the

objective indefiniteness interpretation of OM.

B This interpretation provides the back story to the
standard view of a quantum state:

superposition = complete description.

M | .c., Indefiniteness of a superposition 1s objective.
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Part 1
I B 11

The Logic of Partitions:

the dual to the Boolean logic of
subsets.

Why was partition logic only recently
developed?
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"Propositional” logic = Subset logic
1 | 11

B "The algebra of logic has its beginning in 1847, in the
publications of Boole and De Morgan. This concerned
itself at first with an algebra or calculus of classes, ... a

true propositional calculus perhaps first appeared...in
1877." [Alonzo Church 1956]

B Variables refer to subsets of some universe U (not
propositions) and operations are subset operations.

B Valid formula ("tautology") = result of substituting any
subsets for variables 1s the universe set U for any U.

B Boole himself noted that to determine valid formulas, it
suffices to only take subsets @ =0 and U = 1.



Duality of Subsets and Quotient Sets
-1 | 1]

B Tragedy of
dualize so tl

B Subsets do |

'propositional' logic = propositions don't
e concept of a dual logic was missing.

have a dual, namely, partitions.

B Category T

heory gives subset-partition duality: "The dual

notion (obtained by reversing the arrows) of 'part’

[subobject]

is the notion of partition." (Lawvere)

B A set partition of a set U 1s a collection of subsets =
{B,B',...} that are mutually disjoint and the union 1s U.

B A distinction or dit of a partition r 1s an ordered pair
(u,u') of elements in different blocks B # B' € m.



Table of Dual Logics

Subset Logic

Partition Logic

'"Elements’

Elements u of a subset S

Distinctions (u,u') of a partition 7

All 'elements'

Universe set U

Discrete partition 1 (all dits)

No 'elements’

Empty set &

Indiscrete partition 0 (no dits)

Duality Subsets are images () of Partitions are inverse-images
injections f:S—U () of surjections f:U—T
Formula variables | Subsets of U Partitions on U

Logical operations

U, Ny, =,...

Partition ops. = Interior of subset
ops. applied to dit sets

Formula ®(n,c,...)
holds at 'element’

Element u 1s in subset
d(m,o,...)

Pair (u,u') is a distinction of
partition ®(n,o,...)

Valid formula
d(m,o....)

®(m,0,...) = U for any subsets
T,0,... of any U (|U| > 1)

®(m,o,...) = 1 for any partitions
T,0,... on any U (|U| > 2)
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THE LOGIC OF SUBSETS
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Abstract. Modem categorical logic as well as the Kripke and topological models of intuitionistic
logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic
of subsets of a given universe set. Partiions on a set are dual o subsets of a set in the sense of the
category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality
between quotient objects and subobjects throughout algebra. If “propositional” logic iz thus seen as
the logic of subsetz of a universe set, then the question naturally arizes of a dual logic of partitions on
a universe set. This paper iz an introduction to that logic of partitions dual to classical subset logic.
The paper goes from basic concepts up through the comrectness and completeness theorems for a
tableau sy stem of partition logic.



Part 11
I B 11

The Idea of Objective
Indefiniteness
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Partition logic = logic of indefiniteness
| | 11l

B The new form of logic, partition logic, dual to ordinary
Boolean subset logic, gives a new vision of micro-reality
based on partitions and objectively indefinite entities, and

that vision provides the objective indefiniteness interpretation
of QM.

M Basic idea: interpret block of partition, say {a,b,c}, not as
subset of three distinct elements; but as one indistinct element
that, with distinctions, could be projected to {a}, {b}, or {c}.

B Overview of the argument here:

 the mathematics of partitions using sets can be “lifted” to
vector spaces where superposition = vector sum.

* the result 1s essentially the math of QM, and hence
 the micro-reality described in QM fits this interpretation.
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Tale of two lattices

I B 11
a.b.c
) {/ & {{a}.{b}.{c}} *
Substance {a=b} {a=‘c‘} {b='c‘} / ‘\ Substance
Increases, | >< >< | {{ab}.{c}} {{a}.{bec}} {{b}.{ac}} Increasingly
always fully {a} {b} {c} in-formed by
formed. \ |/ \ ‘/ making
. _ {{a,b.c}} distinctions.
tart with zero O e _
substance. | N | Start with all
Subset lattice Partition lattice substance but

(classical) (quantum) no form.



Dual creation stories: 2 ways to create a Universe U

...Qo

Subset creation story Partition creation story

Subset creation story: “In the Beginning was the Void”, and then
elements are created, fully propertied and dlstlngulshed from one
another, until ﬁnally reachlng all the elements of the universe set U.

Partition creation myth: “I/n the Beginning was the Blob”, which 1s an
undifferentiated “substance” (with perfect symmetry) and then there is a
"Big Bang" where elements (*““its”) are structured by being objectively in-
formed (objective "dits") by the making of distinctions (e.g., breaking
symmetries) until the result is finally the singletons which designate the
elements of the universe U.

In sum, to reach U from the beginning:
 1ncrease the size of subsets, or
* 1ncrease the refinement of quotient sets.
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Old 1dea of objective indefiniteness
-1 | 1]

B Basic 1dea of objective indefiniteness 1s not new:
 "objectively indefiniteness" (Shimony)
* "iIncompletely determined state" (Mittelstaedt)
 "Inherent indefiniteness" (Feyerabend).
* "unsharp quantum reality" (Busch & Jaeger).

M Indeed, standard view = superposition description 1s
complete, then indefiniteness 1s objective.

B As distinctions are made (e.g., measurements),
objectively indefinite states are made more distinct.

B Fully distinct states = eigen states.



Superposition: + =

How to interpret 1t?

Eigenstate 1: Guy Fawkes with goatee

Eigenstate 2: Guy Fawkes with mustache

Objectively indef. superposition: pre-
distinction state before facial hair.

Bohmian superposition: subjectively indef.
but objectively one or other 1s definite.

O &

But not simultaneously definite like a double
exposed photograph.
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Taking vector spaces seriously
1 | 11

® Point (x,y) = (x,0) + (0,y) i
not simultaneously on x- Covato
axis and y-axis. 0.3) |-+ (?EI;Y) (x,0)+(0.y)

B Point (Xx,y) 1s not either
(x,0) or (0,y) but we don't
know which.

B But on projection, (x,y) becomes definitely (x,0)
or definitely (0,y).



) Wave-particle "duality" =
Indefinite-definite particle "dualitirl"l

: : g '
B Example: double-slit experiment. E erecen [ .

* No distinguishing between oz b 2 * fie
slits — “wave-like aspects” = €=z~ --- - [/ .
appear (i.e., interference) but & s ¢ L

« Distinguish between slits with ¢
a measurement (e.g., close a wais axtonis
slit or insert detector 1n a slit) @ ® 2
(? wave-like aspects B "If you could, in principle, distinguish the

1sappear. alternative final states (even though you do

not bother to do so), the total, final

B Translation in objective
probability 1s obtained by calculating the

1ndlst1nc.tne.ss 1.nterpretat10n. probability for each state (not the amplitude)
 No distinctions — and then adding them together. If you cannot
“indistinctness aspects” distinguish the final states even in principle,
appear; then the probability amplitudes must be
.. summed before taking the absolute square to
* Make distinctions — find the actual probability." [Feynman et al.

“collapse of indistinctness.” Lectures Vol. III, p. 3-9]
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Part 111
I ]

The Lifting Program:

From Partition Math to
Vector Space Math
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Linearized Partition Math = QM Math

Mathematics

Linearized Partition Math
of Objective Indefiniteness

ﬁ Lifting

Physics

— Mathemati

Quantum Mechanics

CcSs

_—

De-lifting @

& Logical

Partition Logic

Information Theory

“QM” over Z,
= Logic of QM

of Quantum Mechanics

Objective Indefiniteness Interpretation

B Basis Principle as a conceptual ""algorithm™: Apply a set concept to a basis
set and see what concept 1t generates in the vector space.

B Intuitions can be initially guided using the linearization map U—CV.

B For instance, apply set concept of cardinality to basis set and get vector space
concept of dimension. Cardinality lifts to dimension.
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What 1s the lift of a set partition?
-1 | 1]

B Concept of basis set 1s also the vehicle to lift concept of “set
partition” to corresponding concept for vector spaces.

B Take a set partition © = {B,B',...}of a basis set of V; the
blocks B generate subspaces W, < V' which form a direct sum
decomposition of V: V=2, @W,.

B Hence a vector space partition 1s defined to be a direct sum
decomposition of the space V.

B Hence lifting takes direct sum decompositions from sets to
vector spaces, not quotient sets to quotient spaces.

B An earlier proposition-oriented attempt to relate partitions to
QM math emphasized set-partitions defined by subspaces,
1.e., for WV, v~v' if v-v'e W. That wrong-partition approach
1s called "Quantum logic."




What 1s the lift of a join of set-partitions?
1 | 11

B Set Definition: Two set partitions = = {B,B',...} and 6 = {C,C,...}
arec compatible if defined on a common universe U.

B Lifted Definition: Two vector space partitions ® = {W, } and & =
{X,} are said to be compatible if they have a common basis set, i.e.,
if there 1s a basis set so they are generated by two set partitions on
that same basis set.

B Set Definition: If two set partitions © = {B,5',...} and c = {C,C,...}
are compatible, their Join wvo is defined and is the set partition
whose blocks are the non-empty intersections BNC.

B Lifted Definition: If two vector space partitions ® = {W, } and & =
{X,} are compatible, their Join V¢ is defined and is the vector
space partition whose subspace-blocks are the non-zero intersections
W,X, (which is generated by the join of the two set partitions on
any common basis set).




21

What 1s the lift of a set-attribute f:U— K?
-] | 1]

B [f f1s constant on subset § < U with value r, then formally write
1S =rS, and call § an “eigenvector” of f and » an “eigenvalue.”

B As subsets get smaller, all functions are eventually constant, so for
universe U, dpartition S, ...,S,, ... of U such that formally:

f=rS+..+r S +...
B For any “cigenvalue” r, define f~/(r) = “eigenspace of »’ as union

of “eigenvectors” for that “eigenvalue.”
B Since “eigenspaces’” span U, function f: U— R 1s represented by:

=2, YXr 1)
"Spectral decomposition" of set attribute f:U— .
B Therefore an attribute, which is constant on blocks {f'!(r)} of a set

partition, lifts to something constant on the blocks (subspaces) of a
vector space partition. Spectral decomp.

f=2, 0 0 liftsto L =%, AP,



Attributes f: U— R lift to linear operators!

Lifting Program

Set concept

Vector space concept

Eigenvalues rs.t. fS = 1S for some S A s.t. Lv=Av for some v
Eigenvectors | Ss.t. f|S =S for some t v s.t. Lv = Av for some A
Eigenspaces | (g:f)S = 1S} = o(f (1)) {vilv=2av} =W,
Partition Set partition of “eigenspaces™ | Vector space partition of

(1) eigenspaces W,
Characteristic % U—{0,1} for subsets S Projection operators for
functions like £(r) subspaces like W, =P, (V)
Spectral Set attribute £ U—>R: Hermitian linear operator:
decomposition

=2 X 1r)

L=2 AP,
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Compatible partitions f!, g! lift to
eigenspace partitions of commuting operators

M Set fact: Join of inverse image partitions of two
attributes f:U— /R and g:U'— R defined 1ff

attributes are compatible, 1.e., U= U".

B Vector space fact: Eigenspace partitions of two
linear ops L and M are compatible so join 1s

defined iff the operators commute, 1.€., LM =
ML.

B Eigenspace partitions of commuting operators
L,M generated by basis of simultaneous
eigenvectors that diagonalize the operators.
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Complete joins determine eigen-alternatives

B Set case: Given two same-domain set attributes f,g: U— R,

the blocks f-/(r)mg(s) in the join are uniquely labeled by
ordered pairs (7,s) of values, e.g., (age, weight) of people
in a room. Set of same-set attributes 1s complete 1f join of
their partitions 1s discrete (1.e., all 1-element subsets).

B Vector space case: Given two commuting ops., the blocks
W,NX ,1n the join of eigenspace partitions are uniquely
labeled by ordered pairs of eigenvalues (A4, ©). Set of
commuting ops. 1s complete (CSCO) 1f join of eigenspace
partitions 1s nondegenerate (1.e., all 1-dim. subspaces).
Unique labels are supplied by ordered set of attribute or
observable labels, e.g., sitmultaneous eigenkets (4,4, ...).




Summary: Lifting from sets to vector spaces

Lifting Summary | Set concept Vector space concept
Partition Direct sum decomposition 7 = Direct sum decomposition {W.}
{B} of U: U =B of V:V=)_¢W.
Real-valued Function fU-SR Hermitian operator L: V>V
Attribute
Partition of Inverse-image partition Eigenspace partition W, =
attribute (£1(r)} for FUSR {W,} for L: Vo>V
Compatible Partitions 7,0 on same set U | Vector space partitions {W,}
partitions and {X} with common basis
Compatible Attributes f,g:U >R defined Commuting operators LM =
attributes ’ ML, i.e., common basis of
on same set U simultancous eigenvectors.
Join of compatible | 1o = (Fi(r)ngi(s)} for | W, VW,, = {W,NW_} for LM =
attribute partitions
fg.U->R ML
CSCO Singleton blocks of Vf, ™ for One-dim. blocks of VWy, for
compatible attributes {f."'} commuting operators {L;}
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Part IV
I B 11

The Delifting Program:

From Vector Spaces back to Sets

"Quantum Mechanics on Sets"
as the (new)

Logic of Quantum Mechanics



Dehftmg Program "QM" over Z

Mathematlcs

[Linearized Partition Math

of Objective Indefiniteness ||

Lifting

Partition Logic
& Logical
Information Theory

De-lifting @

Physws

| Quantum Mechanics

Mathematics

“QM” over Z,
= Logic of QM

Ob]ectwe Indeﬁnlteness Interpretation
of Quantum Mechanics
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Delifting to "Quantum mechanics" over Z,
I B 1]

B Delifting program: creating set versions of QM concepts to have
"quantum mechanics" on sets.

B Key step is conceptualizing g (U) as Z,Y! the |U|-dimensional
vector space over 2, so delift takes base field: C—>Z,

B Vector addition = symmetric difference of sets:
S+T = SUT — SNT.

B Example: U = {a,b,c} so U-basis is {a}, U={abc} | U =1d\b,¢
{b}, and {c}. Now {a,b}, {b,c}, and 19, b;f} 1)
{a,b,c} is also a basis since; {a,b}+{a,b,c} ﬁ C% ?53%
= {c}, {b,cj+ic} = {b}, and {a,bj+{b} = {a,c} {d,67)
{a}. Hence take them as singletons of new {a} {t', ¢}
basis set U' = {a',b',c'} where {a'} = {a,b}, 10} {d'b,¢
{b'} = {b.c}, and {¢'} = {ab.c}. <) el

B Ket =row table: Z,°= o (U) =p ((U")
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New Foundations for Quantum Logic = "QM" over Z,

1 1 1]
Set Case: "QM" over Zq Hilbert space case: QM over C
Projections SN () : p (U )%@(U) P:V =V
Spectral Decomp. f [ () =>_.r ( (?") M ()) L=>%,2P
Compl. 3, f ()N () =1:pU) —pU) >ab=1
Orthog. r £+, [f ()N ()] [f )N (| =0n() AL XN, PPy =0
Brackets (S|yT) = |SNT| = overlap for S,7 C U (1|} = "overlap" of ¥ and ¢
Ret-bra Sy [0 [(00]y =g (010 ) = S o) o =1
Resohition (SloT) =g Bl 101) ({1 o T) Bl = . (o) il
Norm [l = /{SluS) = V/|S] where S C U = Vi)
Pythagoras [S7, = Spey (1] [65)” = |9 9T = . (ol (ol
Laplace § # 0, 3_,cp 082 = 57 gy = 1 ) #0, 32, gl — g
ISl =3, |7 g; >l nsl =18 Y[ =A@
Born Rule: Pr(r|S) = 17 ”gﬁgsu - lg‘)ﬁﬂ Pr{Aly) = ‘P)“ﬁ}g)'
Average of attribute: (f}o = % L)y = %ﬂf)ﬁf}} :

Probability math for "QM" over Zo and for QM over C
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Born Rule = Laplace Rule over C

1 | 11

"QM" over Z, QM over C

State = subset S = U = vector in | State = vector in C"

Z,"' represented as: |S) = represented as: [y) =

2 (QutyS){u}) for ({u}|yS)eZ, |ZLvilw)lvy) for (vijy)eC

ISI? =X, {u}[;S)y*=1S] W2 = EVIwXviw)”

Non-degenerate (1-to-1) Non-degenerate Hermitian op.

attribute: f:U—R where L with eigenvalues {A} and

f1(r) =u,. eigen-basis {Vv; }, Lv, = Av,.

Laplace Rule: Born Rule:

Pr(r[S) = ({u,[yS»IIS|I* Pr(A|y) = (v, WXV, w0 /vl

In each case, (absolute) square of coefficient (normalized) 1s probability.



31

Part V
I B 11

Logical Information Theory:

New Foundations
for Information Theory

(classical and quantum)
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Normalized counting measures

in subset logic and partition logic

Logical Finite Prob. Theory Logical Information Theory

'Outcomes’ Elements ueU finite Distinctions (u,u')eUxU finite
'"Events' Subsets Sc U Dit sets dit(n) < UxU
Normalized | Prob(S) = [S}/|U| =logical | h(n) = |dit(m)/|/UxU]| = logical
counting probability of event S entropy of partition 7
measure

Equiprobable | Prob(S) = probability h(m) = probability randomly
outcomes randomly drawn element is | drawn pair (w/replacement) is a

an outcome in S

distinction of 7t

B dit(m) = set of distinctions [pairs (u,u') in different blocks] of 7 .
B Progress of definition of logical entropy:

« Partitions: h(n) = [dit(n)|/|UxU| = 1-Z5__[|B|/|U|]%

* Probability distributions: h(p) = 1-Xp.%;

 Density operators: h(p) = 1—tr(p?)



Synthese (2009) 168:119-149
DOI 10,1007/211229-008-9333-7

Counting distinctions: on the conceptual foundations
of Shannon’s information theory

David Ellerman

Received: 22 October 2007 / Aceepted: 3 March 2008 / Published online: 26 March 2008
© Springer Scienca+Buginess Media B.V. 2008

Abstract Categorical logic has shown that modern logic is essentially the logic of
subsets (or “subobjects”™). In “subset logic,” predicates are modeled as subsets of a
universe and a predicate applies to an individual if the individual is in the subset.
Partitions are dual to subsets so there is a dual logic of partitions where a “distinc-
tion” [an ordered pair of distinct elements (i, &) from the universe U] is dual to an
“element”. A predicate modeled by a partition & on U would apply to a distinction
if the pair of elements was distinguished by the partition 7, i.e., if & and &' were
in different blacks of . Subset logic leads to finite probability theory by taking the
(Laplacian) probability as the normalized size of each subset-event of a finite universe.
The analogous step in the logic of partitions is to assign to a partition the number of
distinctions made by a partition normalized by the total number of ordered |U|? pairs
from the finite universe. That yields a notion of “logical entropy” for partitions and
a “logical information theory.” The logical theory directly counts the (normalized)
mmber of distinctions in a partition while Shannon’s theory gives the average number
of binary partitions needed to make those same distinctions. Thus the logical theory
is seen as providing a conceptual underpmning for Shannon’s theory based on the
logical notion of “distinctions.”

Keywords Information theory - Logic of partitions - Logical entropy -
Shannon entropy

Thizpaper is e dicatedtothe memory of Glan-Carlo Rota—mathematician, philosopher, mentor, andfriend.

[ Ellerman (E2)

Department of Philosophy, University of Caltfornda Riverside, 4044 Mt. Vermon Ave .,
Rivetside, CA 92507, USA

e-mail: david@ellerman.org

Springer
€ Spring

Synthese (May 2009)

Paper on Logical

Information Theory
(@ www.ellerman.org



34

Part VI
I B 11

Philosophically "Deriving" the
Axi1oms of Quantum Mechanics
using the
Objective Indefiniteness
Interpretation



Measurement using Weyl's gratings

B Weyl is one of few quantum physicists to, in effect,
use lifting program to go from set partition induced
by set attribute to vector space partition or "grating"
given by eigenspaces of an operator.

B Measurement applies the
grating to the quantum state.

B [ndefinite blob of dough falls .
through one of the polygonal / A
holes with equal probability and
then acquires that shape. » yl

\
|
M Blob = triangle + square +... but | A | . .

1s not simultaneously all shapes!
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Measurement 1 "QM over sets"
1 1 1]

B U = {a,b,c} with real-valued attribute
f:U—R with the "eigenvalues":

oy {{a}.{b}.{c}}
e f(b)=2 :

. fgc)) = 3., / | \

B Three "cigenspaces": SELIR{ S, {{ﬂ};{hz_@}}{{h};{ﬂ;ﬂ}}
- fi(1)={a :
b N\ |/

. £I1(3) = {c}. {{a.b,c}}

B Take given state S=U = {a,b,c}.

B Measurement of observable f in state S have probabilities:

Pr(z|S) = |f1(r)mS|/|S| = 1/3 forr=1,2,3.

B [f result was r = 3, the state resulting from "projective

measurement” 1s

£1(3)S = {c}.
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QM over sets: Density matrix = Indit-amplitude matrix

B QM represents state S = {a,b,c} by a density matrix (rows &
columns labeled by a,b,c).

B Each entry like the (a,c) in NE corner is defined:

P =+l P, p. 1(a,c)isanindi, else p,, = 0.

B Thus p, = indistinction-amplitude so |p, |* is two
measurement prob. of getting (a,c) if a,c are indistinct in S.

B Since all pairs are equiprobable indistinctions for indiscrete
partition {U}, density matrix p1s all 1/3s.

M Logical entropy: h(p) =
1-tr[ ©°] = 0 since the
indiscrete partition is a P =
pure state (no dits).

W= W= W=
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Non-degenerate measurement
_-- _ 11

0
B After non- degen meas. o| so that the
logical entropy 1s: L

Wp)=1-1rlp*|=1- (5 +4+4)=1
B Change 1n logical entropy = sum of squares of
indit-amplitudes zeroed 1n measurement.

1
3

Dp_

|
oS O
-

B All six off-diagonal terms were zeroed so change in

logical entropy 1s:
6x(1/9)=2/3 = h(p)—h(p)

B Dictionary: cohere = indistinct; decohere = distinct;

non-degen. meas. = discrete post-measurement
partition, i.e., h(1) = (3x3-3)/(3x3) = 6/9 = 2/3.
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Logical entropy measures measurement
1 | 11

B In QM, indit-amplitude lifts to coherence-amplitude so for
pure p, tr[ p?] = sum of two-measurement probs. of getting
cohering (i.e., indistinct) eigenstates = 1.

B In QM, a (nondegenerate) measurement turns pure-state
density matrix p to the mixed-state diagonal matrix p with

the same diagonal entries p;: [~ 2. - 2. 0 0
| Pa Pt P A 0 p, 0

P= . : . == N :

P P P 0 0 = p,

B Hence the logical entropy h(p) = 1-tr[p?] g_oes from 0 to

h() = 1-Ep
B For any measurement, the increase 1n the logical entropy
h(f)g—h(p) = Zlp;[* = sum of coherence (~ indit) terms
p;;|~ that are zeroed or decohered by measurement.



Time-independent Schrédinger equation

Subset creation story Partition creation story

Recall from the partition logic creation story, there 1s some "substance"
that 1s neither created nor destroyed but 1s structured by distinctions. Hence
there will be one observable above all the others, the "amount-of-
substance" operator.
Amount-of-substance attribute lifts to the most fundamental "substance"-
operator H whose eigenstates are stationary:
H|E) = E|E).
"Substance"-operator eigenvector equation

Thus obj. indef. interpretation gives mathematical form of basic time-
independent Schrodinger equation that uses the one fundamental operator.

But the interpretation does not give the form of the operator H nor the
interpretation of "substance" E. That's physics, not logic.

Heisenberg: "Energy i1s in fact the substance from which all elementary
particles, all atoms and therefore all things are made..."
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Time-dependent Schrodinger equation
] | 1]

B What about time-dependent {{&‘}/’{7} f}} + -
=Ya b 1 ) Type 1 Process: Type I Process:
SChrOdlnger equatlon * {{ab}. {c}} {{a}.fb.c}} {{b}.{ac}} 1 Ind;eﬁl?ite Ir;deﬁnit‘;e
B Measurements make distinctions, NP4 moredisinct. evolve i 1o
. . creation o
so what is the evolution of closed {{ab.c}} distinctions.
quantum system with no Partition lattice

interactions that make distinctions?
B What is no-distinctions evolution?

B No-distinctions evolution is evolution with:
constant degree of indefiniteness.

B The degree of indefiniteness or "overlap" between states |@) and |v)
is given by their inner product {o|y).

B Hence the transformations of quantum systems that preserve degree
of indefiniteness are the ones that preserve inner products, 1.e.,

the unitary transformations.
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Objective Indefiniteness and "Waves"

] | 1]
B Stone's Theorem gives Schrodinger-style

"wave" function: U(t) = eHt,

/ sin(9)

M In simplest terms, a unitary transform. | m;':})i

describes a rotation in complex space.

B Vector described as function of ¢ by Euler's
formula: €' = cos(¢) + i sin(o). Complex
exponent1als & their superpositions are

"wave functions" of QM.

B Dynamics = adding rotating vectors.

B Hence obj. indef. interp. explains the "wave
math" (e.g., interference & quantized
solutions) when, in fact, there are no actual
physical waves.
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Lifting set products to vector spaces
1 | 11

B Given two set universes U and W, the
"composite" universe is their set product UxW.

B Given two Hilbert spaces H, and H, with
(orthonormal) bases {|1)} and {[;)}, we get the
lifted vector space concept by applying the set
concept to the basis sets and then generate the
vector space concept.

B The set product of the bases {|1)} and {|})} 1s the
set of ordered pairs {|1)&®|})} which generate the
tensor product H,®H, (NB: not the direct product
H,xH,).
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"Deriving" QM math by lifting partition math
| | 1]

Thus by lifting partition math to vector spaces, we essentially get QM
math: [abstract axioms based on Nielsen-Chuang book]

B Axiom 1: A system 1s represented by a unit vector in a complex vector
space with inner product, i.e., Hilbert space. [lifting program]

B Axiom 2: Evolution of closed quantum system is described by a
unitary transformation. [no-distinctions evolution]

B Axiom 3: A projective measurement for an observable (Hermitian
operator) L = 2, AP, (spectral decomp.) on a pure state p has outcome
A with probability p, = p,, giving mixed state p. [density matrix
treatment of measurement]

B Axiom 4: The state space of a composite system i1s the tensor product
of the state spaces of component systems. [basis for tensor product =
direct product of basis sets]

B No other interpretation of QM 'dreams' of essentially deriving axioms.




The End

 Mathematics ~ Physics
| Linearized Partition Math _ Quantum Mechanics |
of Objective Indefiniteness ||™ Mathematics
A S e E—
Lifting | De-lifting
E “xv.—f’
Partltlon. Logic “QM” over Z,
& Logical = ,
Information Theory = Logic of QM

Objective Indefiniteness Interpretation
of Quantum Mechanics
as the back-story to the standard view:
superposition = complete description of quantum state.
Papers on www.ellerman.org Comments: david@ellerman.org
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Appendix 1: Group representations

B Given group G indexing mappings {R,:U—>U}, 5, what
1s required to make 1t set representatlon of the group G?
B Detine u~u' it 3ge€G, such that R (u) =u'.
« JR, = I, = 1dentity implies reflexivity of ~;
* VgeG, R, s.t. R R, =R, implies symmetry of ~;
* Vg.g'eG, IR, s.t. R, R, =R, implies transitivity of ~.
B {R,U>U}, g 1s a set rep. of group implies ~ is an
equlvalence relation.

B Set rep. of group = group action on U = 'dynamic'
definition of an equivalence relation on U.

B Group action defines indistinctions of a partition.

B E.g., system after application of symmetry 1s indistinct
from system before applying symmetry operation.
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Whence distinct eigen-alternatives?
1 | 11

B Given the indistinctions defined by the set rep. or
group action on U, what are all the distinct
subsets that satisfy the indistinctions, 1.e., that are
not rendered indistinct by a group action?

B Answer: An invariant subset S satistfies
indistinctions, 1.e., R (S)cS Vge G, so maximally
distinct subsets are the minimal invariant subsets
= orbits = equivalence classes of ~.

B Orbits = distinct eigen-alternatives defined by set
rep. or group action of group.
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Lifting from set reps. to vector space reps.
-1 | 1]

M Set rep. of G lifts to vector space rep.
{R;:V>V}, g where R;=I, and R R =R, .

Set Representation Vector space
lifts to —> representation
Invariant subsets Invariant subspaces
Orbits Irreducible subspaces
Set partition of orbits Vector space partition of
irreducible subspaces
Representation restricted | Irreducible
to orbit representation
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Example 1: Set Representation
-1 | 1]
mSetU=1{0,1,2,3,4,5} G=S, = {1l,0}, where

R_(u) = u+3 mod(6).

10,1,2,3,4,5) 10,1,2,3,4,5)
ST 4
10,1,2,3,4,5) 10,1,2,3,4,5)

M3 orbits: {0,3},{1,4}, and {2,5} which partition U.
B Transitive set rep. means only one orbit.
M Set rep. restricted to orbit, e.g., {0,3}, 1s transitive.

B Symmetry-breaking = Move to subgroup, less
indistinctions = more distinctions = refined
partition of orbits.



50

Commuting attributes and their lifts
1 | 11

B Set attribute f:U—>R commutes with set rep. 1f

U —> U

J J

R = R

B Commuting real attribute lifts to Hermitian H
operator commuting: Vg, R H = HR,.

the diagram commutes Vg:

B "Schur's Lemma" (on sets): commuting set
attribute restricted to orbit 1s constant.

B Schur's Lemma: commuting operator restricted
to 1rreducible subspace 1s constant operator.
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Example 2

-1 | 1]
mU-={01,..,11},G=S,={l,6} with set rep. R_(u) =u+6

mod(12) . Six orbits: {0,6}, (1,7}, {2,8}, {3,9}, {4,10},
and {5,11}.
B Attribute f(n) = n mod(2) 1s a commuting attribute.
M Partition:f1(0)={0,2,4,6,8,10},f1(1)={1,3,5,7,9,11}
B Attribute g(n) = n mod(3) 1s also commuting.
M Partition: g-!(0) = {0,3,6,9}, g''(1) = {1,4,7,10}, and g"1(2)
= {2,5,8,11}.
B { g form a Complete Set of Compatible Attributes (CSCA):
* £1(0)ng(0)={0,6}=/0,0),
. £1(0)ng!(1)={4,101=(0,1), etc.
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Lifting set reps. to vector space reps.
-1 | 1]

Lifting Program Set group representations Vector space group reps
Representation Group G represented by Group G represented by
permutations R, U-U invertible linear ops. R VoV
Min. invariants Orbits Irreducible subspaces
Partition Set partition of orbits Vector space partition of

irreducible subspaces

Irreducible reps Reps restricted to orbits Reps restricted to irred. spaces

Commuting with Attribute £ U—>R commuting Operator H commuting with R..

representation _ ' e IR =R
withR,, ie., IR, =1 , HR, = R H

Invariants Inverse-images f(r) for Eigenspaces of commuting H
commuting f are invariant. are invariant.
Schur's Lemma Commuting f restricted to Commuting H restricted to

orbit is constant function. irred. subspace is constant op.
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Appendix 2: Indeterminacy principle in "QM" on sets

B In previous example of U = {a,b,c} and U' = {a'.b',c'} where {a'}={a,b},
{b'}={b,c}, and {c'}={a,b,c}, let f be a real-valued attribute on U and g on U'".
B Don't have operators like L = XAP, since only eigenvalues in Z, are 0,1, but we

do have the projection operators like P,, namely f!(r)m() and g!(s)™(), so the
commutativity properties are stated in terms of those projection operators.

W Letf=y,. and g =Y y,- The table shows they do not commute.

u U’ fI=4betn () | g =4 0300 gl fI | flgl
{a,b,c} {'} {b,¢c} i {b,c} fi
{a, b} {a'} {b} {a'} ={a,b} | {a,c} | {b}
{b; ¢} {t'} {b, ¢} v =1bc} | {bc} | {b¢c}
{a,c} | {a',¥'} {c} {a',0'} =AHa,c} | {a,0} | {c}
{a} {v', '} / {t'} ={b,¢} 7 {b, ¢}
{} | {d,¥,c} {b} {a',0'} ={a,c} | {a,c} | {a,c}
{c} {a,c} {c} {a'} ={a,b} | {a,b} | {b}
f fi f fi f fi

Non-commutativity of the projections {b,¢} M () and {a’,b'} N ().
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Indeterminacy principle in "QM" on sets
I B 1]

B Define that two real-valued attributes f:U—R and g:U'—>R
"commute" iff their projectors f1(r)m() and g-'(s)™() commute.

U U fil=4a, b} ()| h={a", "} () |RTFfT| fTRT
{a,b,c} {a", "} {a,b} {a", "} ={a,b,c} | {a,b} | {a,b}
{a, b} {a"} {a, b} {a"} = {a,b} {a,b} | {a,b}
{b,c} | {o". "} {6} {"} =A{c} / /
{a,c} | {a",b", "} {a} {a", "} = {a,b,c} | {a,b} | {a,b}
{a} {a", 6"} {a} {a"} = {a,b} {a,b} | {a,b}
{6} {0} {6} / v /
{c} {c"} / {"} =A{c} / 7
f f 7 7 7 f

Commuting projection operators {a,b} N () and {a", "} N ().

B Theorem: Linear ops commute iff all their projectors commute iff
there exists a basis of simultaneous eigenvectors.

B In this case, simult. basis 1s {a,b}={a"}, {b}={b"}, and {c}={c"}.
B This justifies previous defn: f and g compatible iff U = U".



55

Appendix 3: Two Slit Experiment in "QM" over Z,: 1
| | 11l

B Linear map A:Z,V'—Z,Vl that preserves distinctness
1s non-singular transformation (no inner product).

B For U={a,b,c}, define A-dynamics by: {a}—{a,b},
{b}—{a,b,c}, and {c}—>{b,c}.

B [ et basis states {a}, {b},
and {c} represent vertical  q1;t |
"positions".

B Two slits on the left, and
"particle" traverses box 1n 1

time period.

M "Particle" hits slits 1n Slhit 2
indefinite state {a,c}.
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Two Slit Experiment in "QM" over Z,: 11
-] | 1]

M Case 1: "measurement," 1.e., distinctions, at slits.
* Pr({a}[{a,c}) ="
* Pr({c}[{a,c})=".

M If {a}, then {a}—>{a,b}, and hits
wall: Pr({a}|{a,b}) =" = qlit 1
Pr({b}|{a,b}).

M If {c}, then {c}—{b,c}, and hits
wall: Pr({b}|{b,c})=12=
Pr({cj|{b,c}).

B Thus at wall: Pr({a}) = Pr({c})

Slit 2

= Y4 and Pr({b}) =Y.
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Two Slit Experiment in "QM" over Z,: 111
-] | 1]

M Case 2: no "measurement," 1.e., no distinctions, at slits.

M {a,c} evolves linearly:
 {a}—>{a,b} and -
e {c}—>{b,c} so that: Shit 1 d
* {ajt{cj={aci—>{abj+{b,c} =
fac} b
B At the wall, Pr({a}|{a,c}) =" T
Pr({cj[{a,c}). Slit 2 C
B "Interference" cancels {b} 1n:
{a,c}—{a,b}+{b,c} = {a,c}.




Appendix 4: Entanglement in "QM" over Z,

B Basis principle: direct product XxY lifts to the tensor
product V®W of vector spaces.

B Subsets of X, Y, and XxY correlate (via delifting-lifting)
to vectors in V, W, and VOW.

B For S,cX and SycY, SyxS,=XxY 1s "separated”
correlates with veV and we W giving separated
vROWe VRW.

B "Entangled" = Not "separated" subset SEXxY.

M Joint prob. dist. Pr(x,y) on XxY is correlated if Pr(x,y) #
Pr(x)Pr(y) for marginals Pr(x) and Pr(y).

B Theorem: SCXxY 1s "entangled" 1ff equiprobable
distribution on S 1s correlated.
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Appendix 4: Bell inequality in "QM" over Z,: 1
1 |

B Consider Z,> with three
incompatible bases U={a,b},
U'={a',b'}, and U"={a",b"}
related as in the ket table.

B Given one of the kets as

initial state, measurements 1n
each basis have these probs.

11
kets | U-basis | U'-basis | U"-basis
1) | {a,b} {a'} {a”}
12) {6} {6'} | {e", 0"}
13) {a} {a',b'} {0}
4) f f f

Ket table for p (U) 2 p(U') = p (U") 2 Z3.

Given state \ Outcome of test || a | b || &' | & || &” | &
{a,b} = {a'} = {a"} % % 1 10 1 |0

1 1
DRSSO o1 o [T}
{a} =4a’,b'} = {b"} 10| s5 |5 011

State-outcome table.




" Bell inequality in "QM" over Z,: 11
| | 11l

B Now form UxU and compute the kets.

M Since {a}={a'.b'}={b"} and {b}={b'}={a",b"},
1(a,b)j={ajx{bj={a',b'jx{b';=1(a'b),(b",b');
={b"}x fa"b"}={(b"a"),(b",b")}.

M Ket table has 16 rows of these relations but we
need the one for an "entangled Bell state™:

1(a,a),(b,b)§=1(a’,a’),(a’,b"),(b',a),(b",b") ; +{(b',b');
:{(a',a'),(a',b'),(b',a')}:{(a",a"),(a",b"),(b",a")} .



Bell inequality in "QM" over Z,: 111

] | 1]
B Define prob. dist. Pr(x,y,z) for probability:

» getting x in U-measurement on left-hand system, &
 1f instead, getting y in U'-meas. on left-hand system, &
 if instead, getting z in U"-meas. on left-hand system.

B For instance, Pr(a,a',a") = (1/2)(2/3)(2/3)=2/9.
B Then consider the marginals:
* Pr(a,a')=Pr(a,a',a") + Pr(a,a',b")*
. Pr(b',b") = Pr(a,b',b")* + Pr(b,b',b")
e Pr(a,b")="Pr(a,a',b")* + Pr(a,b',b")".
B Since probs with asterisks in last row occur in other rows and since
all probs are non-negative:

Pr(a,a') + Pr(b',b") > Pr(a,b")
Bell Inequality



Bell inequality in "QM" over Z,: IV
| | 11l

B Consider independence assumption: outcome of test on
right-hand system independent of test on left-hand
system.

B For given initial state,

{(a,a),(b,b)}={(a',a’),(a’,b"),(b",a")j={(a",a"),(a",b"),(b".a")},
outcomes of 1nitial tests on LH and RH systems have
same probabilities.

B Hence prob. distributions Pr(x,y), Pr(y,z), and Pr(x,z)
would be the same (under independence) if second
variable always referred to test on right-hand system.

B With same probs., Bell inequality still holds.
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. . . " " .
Bell inequality in "QM" over Z,: V
-1 | 1]
B Given state: {(a,a),(b.b)}={(a’a).(a’b),(b'a")}={(a",a"),(a",b"),(b",a")}
B To see 1f independence assumption 1s compatible with

"QM" on sets, we compute the probs.

e Pr(a,a') gets {a} with prob. /2 but then state of RH system 1s
{a} so prob. of {a'} 1s %2 (see state-outcome table) so Pr(a,a')=Ya.

* Pr(b',b") gets {b'} with prob. 1/3 but then state of RH system 1is
{a'} and prob. of {b"} 1s 0, so Pr(b',b")=0.
e Pr(a,b") gets {a} with prob. %2 but then state of RH system 1s
{a} so prob. of {b"} 1s 1, so Pr(a,b")="%.
B Plugging into Bell inequality: Pr(a,a’) + Pr(b',b") > Pr(a,b")
gives: ¥4 + 0 > % which 1s false!

B Hence independence fails & "QM" on sets 1s "nonlocal."
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Appendix 5: Measurement problem in "QM" over Z,: |
| | 11l

B von Neumann's terminology:
* Type 1 process: quantum jump as in measurement;
* Type 2 process: unitary transformation.

B Measurement problem 1s accounting for type 1

Processes.
BIn "QM" over Z,, type 2 process 1s non-singular

transformation A, 1.€., one that preserves
"brackets" taking into account the change of

basis where Au=u'so A(U)=U"
STy = STy = [S'NT|y = (S'ly T
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Measurement problem in "QM" over Z,: 11

B [n"QM" over Zj,:
» Type 2 process = distinction-preserving;
« Type 1 process = distinction-making.

B In tale of two lattices, elements ~ distinctions so element-creating 1s
the "classical" version of type 1 distinction-creating processes.

B And indeed, the process of creating elements certainly cannot be
described by the type 2 evolution of classical mechanics.

{a 90} { {
> aj,{b},{c}} ¢
! fab} { }\{b ) 4
a, a,C ,C / \ Type 1 Process: Type 2 Process:
Tgﬁﬁ 5 (f;g;iisz ngﬁyl (f;gfliis‘ X X | {{ab},{c)} {{al.{be}} {{bl.{ac))  Indefinite Indefinite
elements become elements
elements change elements { } C} \ | / more distinct. evolve with no
properties with no created. creation of
creation of @ { {a,b,c} } distinctions.
elements.

Subset lattice Partition lattice
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Measurement problem in "QM" over Z,: 111
| | 1]
B Similarly, in "QM" over Z,, type 1 distinction-

creating processes cannot be explained by unitary
(Schrodinger equation) type 2 processes.

B Principal distinction-making operation 1s the join-
operation where an attribute f:U—R slices up a

subset S into blocks {f'!(r,)NS| r; eIm(f)} in a {-
measurement.

B Probability: Pr(r;|S) = |f!(r;)"S|/|S].
B Lifting to QM: how are physical distinctions made?
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Measurement problem in "QM" over Z,: IV

| | 11l
B Old problem of finding physically distinguishing events

to perform a measurement.

B Two-slit experiment: why are [slit 1) and |slit 2)
superposable but |detector 1) and |detector 2) not?
B "QM" over Z, gives no physics answer; only conceptual

answer of non-superposable distinguishing events.

"Y ou must never add
amplitudes for
different and distinct
final states. ...You do
add the amplitudes for
the different
indistinguishable
alternatives inside the
experiment." Feynman

Electron
Souce

0 D1
Slit 1 ‘
Slit 2 |

% D2
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Measurement problem in "QM" over Z,: V
-1 | 1]
B Modeling measurement: Q = {a,b}; M = {0,1,2}.
B Assumption: indicator states M not superposable.
B Composite system: QxM = Z,°; (0.0)—(a.1)

B Initial state: {(a,0)}+{(b,0)} = {(a,0),(b,0)}. ggf;:ggg;
B Apply type 2 non-singular transform defined by: Eb,g—}(bbl))
(b2)—(b,0)

B Result 1s: {(a,1),(b,2)} = superposition of indicator states
(like SchrOdinger's cat).

B Then distinctions are made by join-action of partition

Ogx1ly = 11(2,0),(b,0)§,1(a,1),(b,1)§,1(a,2),(b,2)} }.
B Result 1s mixed state: {(a,1)},{(b,2)} with half-half prob.
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New Quantum Logic ="QM" over 2

Logic of X = bare-bones essence of X.

Proposed new Quantum Logic = QM math

e Distilled down to 0,1 aspects, i.e., from C to Z; as base field,
e Without metrical aspects in "quantum states",
¢ No physical assumptions.

Take powerset g (U) as vector space Z) over Z; where
|u| = n.

Vector addition = symmetric difference, i.e.,
S+T=SUT-SNT.

Each subset, e.g., {a,b} C {a,b,c,d}, is vector sum:

{a} +{b} inZJ.

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 2/23



Kets in a vector space over 2

e Consider U = {a,b,c} and U’ = {d, V', '} where:

o {a'} ={a,b} = {a} +{b},
o {t'} ={bc}={b}+{c},
o {} ={abc} ={a} +{b} +{c}.

e Therefore, say,

{t, 'y ={V'} +{c'} = {b,c} +{a,b,c} = {a}.

U || {ab,c}

{a,b}

{b,c}

{a,c}

{a}

{b}

U || i)

{a’}

{b’}

{a’,b’}

{b",c’}

{a’b’,c’})

QQ

Ket table for Zg: Columns = kets

e Each column gives a ket (abstract vector) expressed in
different bases.

David Ellerman (UC/Riverside)

Appendix 6: Quantum Mechanics over Z;

April 2013

3/23



From set to vector space partitions
e Projection operator: BN () : p (U) — p (U).

e Real-valued observable in U-basis: f : U — R.
o Eigenspaces: f~! (r) for eigenvalues r in image ("spectrum") of

ScU S eZZ‘U‘

£1(r,)nS Flie)ns NS (r)NS
£(r,)NS '(r,)NS

U=firpw i)W i) of ') @ ef () @ of ') = pU) = Z,"
Set partition Vector space partition

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 4/23



Spectral decomposition of attribute f: I
e Attribute f : U — R restricted to small enough subset

S C U has a constant value r so we formally write:

fl15=rS§
Set version of eigenvalue equation: Lv = Av.

e Eigenspaces are p (f~1 (r)) for eigenvalue r and projections to
eigenspaces are:

FHON0 e ) = o U)
Set version of projections P, to eigenspace E, for A.

¢ Using this formal convention, we have:

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 5/23



Spectral decomposition of attribute f: II
f=Srf 0]

Spectral decomposition of f : U — R
Set version of: L =) ) AP,.

e Vector space (over Z,) partition of eigenspaces:

Pt M) edp () =2y
Set version of ), GBEA =V.

o Completeness of eigenspace projections:

L n0] =1:pU) — pU)
Setversionof ) Py =1:V — V.

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 6/23



Spectral decomposition of attribute f: III

e Orthogonality of eigenspace projections: (note orthogonality
of projections well-defined without inner product)

Forr 7, [f1 (NN O] [f ()Nl =20 () :pU) — p(U)
Set version of: for A # A", P\P,, =0:V — V.

e Summary:

"QM" over Z, | QMoverC |
SN():p(U) — p(U) P:V—-V
f10=Xr(f " (nn0) L=Y,\AP,
Yf TN () =1:p(U) — p(U) YaPy=1
r#7, N0l )Nl =2n() [A#A,PAPy =0

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 7/23



Brackets in QM over 2: 1

e No inner products in vector spaces over finite fields, but the
set version of Dirac’s bra-kets can still be defined at the cost
of basis-dependent bras.

e Kets |T) are basis-free, but bras (S|;; are basis-dependent as
indicated by subscript: For S, T C U,

(SluT) = |SNT]
= cardinality of overlap of Sand T.

e Basis Principle for lifting: Apply set concept to set of basis
vectors and generate the corresponding vector space
concept.

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 8/23



Brackets in QM over 2: 11

e Basis Principle for delifting: Define vectors g = Y, <5 [0;)
corresponding to subsets S C {|v;)} of a basis set {|v;)},
and the apply vector space concept to those vectors to
suggest set concept.

e Giventwosubsets S, T C {|v;) }, ¥5 = Yp.cs |v;) and
Y1 = Ly,er |0i), then the overlap between the state-vectors
s and 1 is the inner product (P¢|ip) = [SNT|.

e This motivates and confirms the definition: for S,T C U

(SuT) = SN T]
Brackets in QM over Z,,.

e Thus (S|; : @ (U) — Ris the basis-dependent set version of
the basis-independent bra (v| : V — C.

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 9/23



Brackets in QM over 2: 111

¢ The idea of a real-valued basis-dependent function on
vectors in vector spaces over Z; is standard in coding
theory. Given two ordered n-tuples of 0,1s, S and T, then
Hamming distance function is d (S, T) = |S + T| where the
addition is the symmetric difference so it is the number of
places where the binary strings differ.

e For u € U, the ket-bra
{u}) {ully={utn():p(U) — p(U) is defined as that
projection operator.

o Completeness of ket-bra sum:

Lueu [{u}) {utly =11 o (U) — ¢ (U)
Set version of: Y ; [v;) (v;| =1:V — V.

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 10 /23



Brackets in QM over 2: IV

e Resolution of unity by ket-bra sums:

(SIUT) = X (Slu {u}) ({u} |uT) = ST for s, T C U
Set version of: (1|@) = Y_; (¥|v;) (vi|@).

e Then ({u} |S) is the amplitude of {u} in S, i.e.,

() =5 ) ={ i s

David Ellerman (UC/Riverside) Appendix 6: Quantum Mechanics over Z; April 2013 11/23



Example: Resolving a ket

o Also a ket |S) can be resolved in the U-basis: for S C U,
1S) = Lueu ({u} [uS) [{u}) where ({u} |[uS) = amplitude of {u}
inS
Set version of: |¢) = Y_; (v;|¢) |v;) where (v;|p) = amplitude of
v in .
e Using the previous example, |[{a,b'}) can be resolved in the
U-basis.

[{a’,0'})
= ({a} lu{a", V'}) {a}
+ ({0} [u{d’,0'}) |{b})
+ {{c} lu{d,b'}) [{c})
(then using {a’,V'} = {a,c})
= {at n{a,c}| {a}) + [{b} N {a,c}[[{b}) + [{c} N{a,c}| [{c})
= {a}) + [{c}).
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Summary so far

QM over Z, | QM over C |
SN :pl) — p(U) P: V-V
f10=%rf"1(n0) L=Y\APy
L (N =1:pU) — p(U) YaPy =1
0Ol N0l =200 PyPy =0
(S|uT) =|SNT|=overlapS, T C U (W|p) = overlap P, @
Yucu l{u}) {utly =1 Lilvi) (oi| =1
(SluT) = Yy (Slu{u}) {up [uT) | (@le) = ¥ ($loi) (vil@)
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Magnitude (or norm): 1

e Notation conflict: In QM and complex numbers, the

magnitude or absolute value |v| = /(v|v) is indicated with
the single bars |v|. But in QM over Z,, the single bars are
the standard notation for the cardinality |S| so we use the
alternative norm-notation ||S|| ; for the "magnitude” in the
set case.

e Norm or magnitude of a vector in Z7 is: for S C U,

ISl = v (SluS) = V15|

Set verision of: |¢p| = /(P|¥h).

¢ Resolution of unity applied to magnitude squared:
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Magnitude (or norm): II

ISI5 = (SIuS) = Lueu (Slu{u}) ({u} |uS) = ||
Set version of:

91> = (ple) = T (¥[oy) (oilp) = L (vl 9)” (oi]y)

e Normalization to get Laplacian probabilities: for S # @

(Sluf{up){u}lus) _ 1
Zueu > H5||12,1 = —Zues S] =1

Set version of: ) ; % =1fory #0.

¢ Note how Laplacian equi-probabilities are derived from the
squares of the basis-coefficient values (S| {u}) ({u} |uS)
constituting the state S C U, just as the QM probabilities are
derived from the absolute squares of the basis-coefficient
values: (v;|9)" (v;|p) (after normalization in both cases).
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Magnitude (or norm): III

Laplacian probability of u given S: Pr (u|S) = <S|U{”|ﬁs>|<‘§”}‘”5>
u

Set version of QM probability: abs. sq. amplitude = %

e Much ado is made of quantum probabilities being the
absolute squares of the amplitudes constituting the state ¢,
but now we see that the same is true in ordinary logical
finite probability theory once formulated using the
concepts of QM over Z, i.e,,

u 2 1/|S|ifues
Pr (ul$) = {{glus- ={ ot g s
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Attributes (RVs) and probabilities: I

¢ A real-valued attribute f : U — R is a random variable on
the Laplacian (equiprobable) outcome space U.

e GivenS C U, S # @:

ISI% = (SluS) = &, [f (N NSl =S [F 1 () ns| =]
Set version of: |¢| = (Plp) = L [P ()

e Normalized sum: for S # @,

Hf‘1<r>ﬂS|| [F*ns|
L HE ELe T 7L

Set version of: ), % =1fory # 0.
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Attributes (RVs) and probabilities: 11

e Given the set S, the probability that the random variable
f : U — R has the value r is:

F1(nns||; “1(nns
Pr (7,'5) — I S ||u — |f |57| |

2
Set version of Born Rule: Pr (A |¢|) = |p)|‘$|pz) C.

e Nota Bene that the set-version of quantum mechanic’s Born
Rule is not some mysterious "quantum probability" but is
the perfectly ordinary Laplace-Boole logical finite
probability of a random variable f taking a certain value r
given a subset S.
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Example: Probability of two dice giving a 7

e Outcome space U = {1, ...,6} x {1,...,6}.

e Random variable f : U — R where f (dy,dy) = dq + d>.
e F1(7) = {(1,6),(2,5),(3,4),(43),(52),(6,1)}.

e Take S = Uso |1 (7)NU| = 6and |U| = 36.

e Laplacian probability of getting a 7 is:

_F'onully, _ o] e g
% i % 6

Pr (7|U) = =
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Average value of an attribute-observable

¢ Given an attribute-observable f : U — R, the spectral
decompositionisf | () = ¥, 7 [f ! (r) N ()] so that:

(Sluf 1 = (Slu, LN NOIS)y =L r(Sluf *(r)nS) =
Y, V (r)ns.

e Then normalizing by (S|;S) gives:

fs = <S|<l§7‘cu(s)>‘s =Y.r |f |S| ns| _ =Y,rPr(r|S)=ave.of fon S
Set version of: (L), = $lLly) _ average value of observable L in
$ = yly) &
state ¢.
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Remaining summary table

OM over Z, OM over C
||5||uj\/<5|u5>=\/!5|f20r5§U Z\IPIZ\/W’IIM
||5||u—2ueu<{u}lu5> \5| 9" = Y (vilg)” (oily)
{”H 5 (i) (o)
HSHu—le ﬂS\ K 9> = A lPa (9)]
)y Ftnns| _ IPA()]
ErWU Yo g =1 XA of
- onslly, _ I ons] Pr (A [PA(#)
e Hs@luﬁ()I; - o) _<1/J|L\‘lp>‘2
{f)s = “@ns L)y = Ty -

Z, = C takes quantum logic to quantum mechanics

David Ellerman (UC/Riverside)
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Objective indefiniteness in QM over 2: 1

o Collecting elements a,b € U = {a, b, c} together in the
subset {a,b} is the set version of superposition of basis
vectors vy + vs.

e But the subset {4, b} is not interpreted as a subset of definite
elements a, b but as a single indefinite element that is
indefinite between {a} and {b}, just as \% (v1+1vp)isa
quantum state that is objectively indefinite between the two
eigenstates v; and v;.

e Probabilities also have an objective indefiniteness
interpretation.

¢ Sisa single indefinite element, and the probability that the
indefinite element S will reduce to the definite element {u}
in a nondegenerate measurement using the U-basis is:
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Objective indefiniteness in QM over 2: 11

Pr (u|S) = <5|u{t<lg|>ég>l}|u5> _ %

e Similarly in QM over C,

e ¢ is an objectively indefinite state, and the probability that
the indefinite element ¢ will reduce ("collapse") to the
definite element v; in a nondegenerate measurement using
the {v;} basis is:

(¥loi) (vily)
(Uz|¢) ¢7|¢7> .
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