Discussion Notes on Physical Computation

Samuel C. Fletcher and Jason Hoelscher-Obermaier

June 15, 2010

Much has been written as of late on the status of the physical Church-
Turing thesis and the relation between physics and computer science in gen-
eral. The following discussion will focus on one such article [5]. The purpose
of these notes is not so much to argue for a particular thesis as it is to solicit

a dialog that will help clarify our own thoughts.

1 Introduction

Historically the Church-Turing thesis (CTT) has been an assertion about the
limits of effective computation. The CTT states that the class of effectively
computable functions coincides with the set of recursive functions. Sub-
sequently, however, a very different interpretation according to which the
CTT is a statement about the limitations of physical computers has been
influential. In fact, many researchers nowadays take the CTT to be such
a statement. Crucially, however, there are many different versions of this
physical CTT, and failure to distinguish between them can easily lead to
confusion. We will examine one such example here.

Nielsen [5] presents a self-adjoint operator h = ey h(k)|k) (k| on an

infinite dimensional Hilbert space, where h(k) is the Halting function.® If

!The Halting function is defines as follows. Fix an enumeration {7T},} of the Turing
machines. H(n) = 1 just when T,, halts on input n, and is zero otherwise. It is a classical



implemented as a measurement, this Halting observable would allow for the
computation of a non-recursive function. From this, Nielsen concludes that
there is some tension between the full formalism of quantum mechanics, in
which any self-adjoint operator corresponds to a physical observable, and the
CTT: either the CTT needs revision, or only a restricted class of self-adjoint
operators is implementable in practice as observables.?

Whether or not there is in fact tension between the CTT and the “full
formalism of quantum mechanics” crucially depends, of course, on what the
CTT is taken to assert. Nielsen specifies the CTT to be the statement
that “every function which can be computed by what we would naturally
regard as an algorithm is a computable function, and vice versa.” This
statement makes contact with Church and Turing’s original thesis on the
limits of effective computation. But in order for there to be any tension
with quantum mechanics, Nielsen must have some version of the physical
Church-Turing thesis in mind. In fact, the character of Nielsen’s argument
depends crucially on which version of the physical CTT he takes to be in
conflict with quantum mechanics. Let us therefore provide a brief overview

and classification of different versions of the physical CTT.

2 The Physical CTT

The different versions of the physical CTT fall roughly into two classes.
Some versions assert the Turing-computability (in some sense) of all physical
processes; others restrict themselves to asserting the Turing-computability of
only those physical processes that count (in some sense) as computations. In
this paper we follow Piccinini [6] in referring to the former class as the bold
physical CTT and the latter as the modest physical CTT.

result in computation that the Halting function is non-recursive.

2In fact it is not crucial to think about measurements. As Nielsen shows, one can just
as easily write down Hamiltonian operators which, if implemented physically, would allow
the computation of non-recursive functions.



Let us begin with the bold physical CTT. Piccinini lists a few (more or

less) explicit, but not always obviously equivalent, versions.?

1. Any physical process can be simulated by some Turing machine (e.g.,
2, 10, 8]).

2. Any function over denumerable domains (such as the natural numbers)
that is computable by an idealized computing machine that manip-
ulates arbitrary real-valued quantities (as defined by [1]) is Turing-

computable.

3. Any system of equations describing a physical system gives rise to com-
putable solutions (cf. [3, 9]). A solution is said to be computable just
in case given computable real numbers as initial conditions, it returns

computable real numbers as values.*

4. For any physical system S and observable W, there is a Turing-computable
function f such that for all ¢t € N, f(t) = W (¢t) [7].

The bold thesis in these formulations has the character of a high-level
law of nature or theoretical principle comparable to, say, the law of energy
conservation which holds across various disparate physical theories. On this
account of the CTT, Nielsen’s argument would then be akin to showing that
some scientific theory violates the law of energy conservation. The trouble for
his argument in this case is that some of these bold versions of the physical
CTT are likely to be untenably strong. And even if the bold physical CTT
should turn out to be compatible with the all of physics except for the halting

observable, it is not clear why such a non-computable physical process should

3We state the different versions of the bold physical CTT more or less as they are
stated by Piccinini. We do not thereby vouch for their conceptual clarity and we make
no attempt to do so since it will not be necessary for what follows. Note also that the
references are to articles in which the corresponding version is stated. The corresponding
statements are not necessarily endorsed there.

1A real number is computable iff there is a Turing machine which computes arbitrarily
good approximations to it.



not simply be taken as empirical evidence against the bold physical CTT. In
the words of Chris Timpson: “[IJf[...] a well-confirmed and detailed physical
theory [...] says that some process is possible, then that theory holds the
trump card over a less specific generalization covering the same domain”
(where the less specific generalization is the physical Church-Turing thesis).®

There is a different way of understanding the physical CTT, in which
we only require anything computable by a physical process to be Turing
computable. This is the modest version of the thesis. Of course, an exact
formulation requires a precisification of “computable.” On a first pass, we
might think of a physical computation as any physical process that allows
agents to gain knowledge about the values of some known function. Hence,
one might say that while the bold thesis is a metaphysical thesis, the modest
thesis is epistemological.

In the context of the modest physical CTT, it seems that a definition of
physical computation must therefore presuppose a definition of knowledge.
Given the historical intractability of the latter problem we will not attempt to
advance a necessary and sufficient set of conditions for physical computation.
Instead, we can consider some proposals for what might amount to necessary

conditions — plausible candidates, at least. Here are Piccinini’s:®

1. Readable input and output. Most importantly, having to measure a
real-valued quantity exactly must not be an essential part of a physical

computation.

2. Process-independent definition. The function computed must be de-
fined outside of the context of the computation, that is, one needs to
have a sufficiently precise characterization of what is purportedly being
computed before a process is to count. Process-independence rules out
machines such as true random number generators which would compute

some non-recursive function, without specifying which.

SPersonal communication.
6Note that also other authors (e.g. [4]) have proposed different “packages” of conditions.
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3. Repeatability. On a reasonably weak version of repeatability one might

require merely that it be possible to implement the same process again.

4. Resettability. One must be able to reset the physical system enacting

the computation to some initial state.”

5. Physical constructibility. The process implementing the computation
must in some sense be possible, at least in principle. (We will have

much more to say about this below.)®

6. Reliability. For example, it should not be the case that it is only rea-
sonable to use the process for the purpose of computation under the

assumption of perfect control over the system and its environment.

Does Nielsen have the bold or the modest physical CTT in mind? It
seems overwhelmingly likely that he has some version of the modest CTT
in mind since he explicitly requires that the process be constructible in a
laboratory, stable under perturbations, and in some sense verifiable. But
in order to demonstrate a tension between the modest physical CTT and
QM, Nielsen at the very least needs to explicate which criteria he is using,
and show that his examples meet these necessary criteria in order for them
to “count” as computations. And among the necessary criteria for physical
computations, it seems that physical constructibility is the critical point:
Nielsen’s dilemma is whether or not it is “possible in principle” to construct
the halting observable. But there is an interesting ambiguity in the force of

“possible in principle,” here:

TOf course, there are many different versions of different strength for both the repeata-
bility as well as the resettability requirement.

8Piccinini also explains why the fact that Turing machines are themselves unlikely to be
physically constructible is not an argument against this requirement. The physical version
of the CTT is supposed to give merely an “upper bound” on what is physically computable.
The fact that it might not even be possible to physically realize all Turing computations
does not invalidate it. The physical CTT does not assert that we can actually (physically)
build a Turing machine, but rather that we could not build something more powerful.



1. Does “possible in principle” mean merely that it does not contradict

any known natural laws (i.e. is merely consistent with them)?

2. Slightly stronger: Assuming that the known laws are complete, is it

consistent with them?

3. Slightly stronger again: Assuming that the known laws are complete,
is it likely (according to some specified measure, for example on the set

of initial conditions)?

4. Does it mean that we could realize it if we had access to arbitrary

resources such as non-recursive functions?

5. Or is it a requirement with respect to current (or near future) human
capabilities, that is: Does it mean that there is an effective procedure

to build such a machine?

One might think that the force of “in principle” is to abstract away from
human-specific considerations. But Nielsen urges us to construct (literally)
the measuring apparatus and prepare the system to be measured if it is
“possible in principle” to perform a measurement of the halting observable.
This locates his “possible in principle” relatively far down on the above list
(number five); for Nielsen, according to the physical CTT it is impossible
in principle (in the sense of number five) to perform a measurement of the
halting observable. But this sense of “impossible in principle” is not neces-
sarily in conflict with physical law. In a word, quantum mechanics allows
that the measurement of the halting observable is possible in principle in
senses one and two, at least, but this is not in conflict with the impossibility

of measuring the halting observable in sense five.?

9Contingent upon the conflict between the CTT and QM, Nielsen requires that we
accept one and modify the other. But why, say, if we accept QM must we modify the
CTT? Why can’t we simply reject it? His insistence on modifying the CTT so as to be
consistent with QM might arise from a confusion of the physical CTT with the traditional
CTT. Insofar as we are in need of a definition of “computable,” we need a definition that



As a final point, we should note that, independent of its validity, Nielsen’s
argument does not depend on any distinguishing features of QM. One could
equally well construct classical observables and classical Hamiltonians that
one could use to compute the Halting function in the same sense. The air of
plausibility to his argument may derive in part from the many extraordinary
and unintuitive consequences of the quantum theory, especially with regard
to the theory of computing; we are much less susceptible to believing his

argument in the context of classical mechanics.

3 The Intersection of Physics and Computa-
tion

At this point we wish to zoom out a bit and pose some general questions for

consideration and discussion.

e We have seen above a case wherein the application of concepts from
computer science to physics has been misguided. Are there truly justi-

fied cases where such a process could fruitfully occur?

e Although in the above the particular usage of QM turned out to be
irrelevant, there are certainly distinctions between classical and quan-
tum computation that are philosophically interesting. For example,
it is well known that there exist quantum algorithms — e.g. Shor’s
and Grover’s algorithms for factoring and searching, respectively —
that outperform their classical counterparts. What does the statement
“quantum algorithms outperform their classical counterparts” mean,
particularly since these algorithms are formulated in different compu-

tational models? Can we identify what aspects of QM explain this

is not only compatible with but also useful in the context of our (best physical) theories.
But the physical CTT provides no such definition. So we will pass over his discussion of
emendations in silence.



speedup?

e We measure the complexity of some particular algorithm by the way
the number of basic computational steps increases with the size of the
input. What justifies the use of any such particular basic steps? Are
they justified merely from pragmatic concerns, i.e., is the label “basic”

shorthand for “easily implementable”?

e Quantum algorithms are built from unitary operators, and the prod-
uct of unitary operators is a unitary operator. Thus, any quantum
algorithm can always be written as a single unitary transformation.'?

Why do we take any particular set of unitary transformations to be the

“basic” building blocks of a quantum algorithm?

e Given some version of the physical CTT, are there functions which are
recursive but not physically computable? Given any function, recursive

or not, is it an empirical question whether that function is computable?

e Given any specific version of the physical CTT are there counterexam-

ples to it?
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