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Abstract

A condition for physicality in general relativity based on topological stability is
investigated. Stability in this sense is attractive, for it may seem at first to reduce part
of the philosophical problem of understanding physicality to a technical one. What
counts as stable, however, depends crucially on the choice of topology. Some physicists
have thus suggested that one should find a canonical topology, a single “right” topology
for every inquiry. While certain such choices might be initially motivated, some little-
discussed examples of Geroch [1970, 1971] and some propositions of my own show
that the main candidates are not appropriate for every purpose. Although one might
find a topology that avoids the particular problems I raise, I suggest instead that the
search for a canonical topology is misguided. The conclusion is largely methodological:
instead of trying to decide what the “right” topology is for all problems, one should
let the details of particular problems guide the choice of an appropriate topology.

1 Stability and Genericity in General Relativity

Despite the fundamental role the notion of physicality plays in guiding the practice of physi-
cists, there is no consensus on precisely what it is. Part of the difficulty is the concept’s
apparent vagueness and overloaded meaning: in different contexts, “unphysical” could, for
example, refer to underdetermination, gauge-like overdescription, conflict with experiment,
or some more intuitive notion of pathology [Norton, 2008, §3.2]. Some cosmologists propose
that a relativistic spacetime can be deemed “unphysical” and excluded from relevance in
virtue of it instantiating certain properties, like being extendible, non-isotropic, non-globally
hyperbolic, or having holes [Manchak, 2011].1

In disentangling these various meanings and uses, it will be helpful to be very specific.
Accordingly, this paper explores the stability of a property of a relativistic spacetime as a

∗Thanks to audiences at Irvine and Pittsburgh for helpful comments, especially Jeff Barrett, Ben Feintzeig,
Dennis Lehmkuhl, and Chris Wüthrich, and to Jim Weatherall for much guidance, including conjecturing a
special case of proposition 3 and sketching a special case of proposition 6. Thanks also to John Manchak
for spurring me to prove proposition 5. Part of the research leading to this work was completed with the
support of a National Science Foundation Graduate Research Fellowship.

1See also Earman [1995, Ch. 3.4] for a discussion in the context of the cosmic censorship hypothesis.
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necessary condition for that property to be physical. In contrast to the above, this condition
bears on the physicality of particular properties of a spacetime rather than on the physi-
cality of the spacetime itself.2 Roughly, a property of an object O of a specified class (like
mathematical models, solutions to a differential equation, etc.) is stable when all objects in
that class sufficiently similar to O also have that property. One fairly weak way to formalize
stability is to put a topology on this class of objects. This determines notions of convergence
for sequences and continuity for parameterized families. The topology’s system of open
neighborhoods then codifies this similarity mathematically, so that a property P of O (or,
more generally, of each of a set of objects {Oα}) is stable just in case there is an open set
containing O (resp. {Oα}), all of whose members also have P . The name “stability” comes
from the intuitive picture that the property is preserved under arbitrary (but sufficiently
small) perturbations.

There are several ways to motivate the connection between physicality and topological
stability. One involves securing inference under idealization. Scientists often use idealized
models to represent phenomena of interest for convenience when more referentially accurate
models are intractable. In these cases, one would like to infer properties of the target model
from properties of the idealized model. Such an inference will be valid when the idealization
is not too severe and the property in question is stable. Another related motivation uses an
analogy with the epistemology of experimentation. If one perturbs the object O sufficiently
slightly and some property P disappears, one may have reason to believe that P was just an
artifact of the imperfect mathematical representation of the phenomena it represents, just
as a new experimental effect vanishing upon twiddling unimportant knobs on the appara-
tus gives one reason to believe that the effect was really an artifact of the messy material
assumptions built into one’s understanding of the experiment.

While these motivations are not unproblematic and certainly deserve further study, for the
remainder of this paper I will set them aside to focus on the connection between physicality
and stability for properties of relativistic spacetimes. Recall that a relativistic spacetime is an
ordered pair (M, gab), where M is a four-dimensional smooth manifold3 and gab is a smooth
Lorentzian metric on M , whose indices are abstract.4 Then the collection of objects to
topologize consists of the Lorentzian metrics on a fixed manifold M , which I denote L(M).5

Stephen Hawking has asserted that “the only properties of space-time that are physically
significant are those that are stable in some appropriate topology” [Hawking, 1971, p. 395].6

Similarly, stability can play a role in making generalizations about classes of spacetimes in

2As such, physicality is a second-order property. Cf. Fletcher [2012, §3.1,3.3], who considers the second-
order property of being a measure-theoretic null set as condition for unphysicality and possible relationships
between physicality of properties and physicality of models.

3One also requires M to be connected, paracompact, and Hausdorff. While dim(M) = 4 is of the most
physical interest, the proofs of the appendix allows for the more general case of dim(M) ≥ 2,

4That is, the super- and subscripts of tensor fields like gab label copies of vector spaces in which the fields
reside. See, e.g., Malament [2012, §1.4].

5One might of course also wish to compare spacetimes whose underlying manifolds are not identical or
even homeomorphic. Although Hawking and Ellis [1973, p. 198] state that this can be done, to my knowledge
no one has done so in print.

6See also Hawking and Ellis [1973, p. 197]. While I do not completely agree with Hawking’s stated
justification for his proposal (via “the uncertainty principle”), it is nevertheless independently plausible for
the foregoing reasons.
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the face of counterexamples that one believes to be exceptional or isolated. In such cases, the
property of being a counterexample to the generalization would be unstable, hence would
be unphysical and ignorable. In this sense, one would like to talk of a property P holding
generically on a family A of spacetimes when it holds on an open dense (relative to A) subset
of A. Consequently, Hawking says that “For physical purposes it is sufficient to prove that
a theorem holds generically” [Hawking, 1971, p. 395].

One attraction of Hawking’s proposal is that it seems to reduce part of a philosophical
question to a technical question: in certain cases, instead of puzzling over the meaning
and use of “physicality,” one instead may determine on which sets a property of interest is
stable; instead of assessing the significance of apparent counterexamples to a theorem, one
simply proves that the theorem holds generically. But a problem arises immediately: there
are infinitely many topologies one can place on L(M), topologies that can differ regarding
whether a property is stable or generic on a set.

2 The Open Topologies

How can one decide which topology to use? Perhaps there is in fact a canonical topology: a
single choice of topology over L(M) that should apply whenever such a topology is needed.
Such a position has been suggested by Geroch, who writes, “It is important, I feel, that one
settles on one (or possibly two) topologies in which to work rather than discovering a new
topology for each new theorem” [Geroch, 1970, p. 269],7 and more strongly by Lerner [1972]
and Lerner and Porter, who advocate for a particular choice: “if one regards all Lorentz
metrics on M as being on an equal (mathematical [sic] footing, it appears that the only
acceptable choice for a topology is the Whitney fine Ck topology” [Lerner and Porter, 1974,
p. 1413]. This topology, also called the Ck open topology, may be defined as follows. First, let
hab be some (inverse of a) positive definite metric on M , and define the “distance” function
between the kth partial derivatives of two Lorentz metrics gab, g

′
ab relative to hab as

d(g, g′;h, k) =

{
[hruhsv(grs − g′rs)(guv − g′uv)]

1/2, k = 0,

[ha1b1 · · ·hakbkhruhsv∇a1 · · ·∇ak
(grs − g′rs)∇b1 · · ·∇bk(guv − g′uv)]

1/2, k > 0,

(1)
where ∇ is the Levi-Civita derivative operator compatible with hab. I have omitted the
abstract indices in the arguments of d since they needlessly clutter the notation, and I will
hereafter continue to drop them when they will never be contracted.

A particular choice of positive definite h effectively determines a coordinate system in
which d(g, g′;h, k) compares the components of the kth order derivatives of g and g′ at each
point of M . Then the sets of the form

Bk(g, ε;h) = {g′ : sup
M

d(g, g′;h, 0) < ε, . . . , sup
M

d(g, g′;h, k) < ε} (2)

7I do not attribute to him outright advocacy, since a careful reading reveals an admixture of method-
ological pragmatism: “I think it is important . . . to eventually settle on one or possibly two topologies with
which to work. Hardly any economy of thought results if there are hundreds of topologies in use” [Geroch,
1971, p. 73]. Moreover, later writings indicate a preference for the methodologically contextualist approach
I take in §4: “The topology one chooses in practice depends on what one wants the topology to do” [Geroch,
1985, p. 175–6].
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constitute a basis for the Ck open topology, where g ranges over all Lorentz metrics, ε ranges
over all positive constants, and h ranges over all positive definite (inverse) metrics. One can
view these basis elements as generalizations of the ε-balls familiar to metric spaces.

But how does one justify the Ck open topology as canonical? For instance, how should
one chose the right value of k? One way is to investigate examples of stability about which
one has a strong intuition, ruling out available topologies that do not meet them. For
example, in discussing a theorem proving the stability of the strong energy condition8 in the
C2 open topology, Lerner writes,

It should be pointed out that [this theorem] is not true in any of the weaker
topologies frequently used . . . If we agree that any reasonable topology . . . should
allow perturbations preserving the existence of non-zero rest mass, we may take
this as further evidence in favor of the [open] topologies. [Lerner, 1973, p. 28]

Indeed, it seems that virtually all of the results regarding stability and genericity of global
properties of spacetimes have used one of the open topologies. For example, the encyclo-
pedic monograph Global Lorentzian Geometry, which has an entire chapter on “stability
of [geodesic] completeness and incompleteness,” defines only the open topologies for these
purposes [Beem et al., 1996, p. 63 & Ch. 7].

However widely accepted, the universal appropriateness of the open topologies has not
gone unquestioned. Geroch [1970, 1971] has provided a pair of examples that illustrate some
disquietingly surprising features of the C0 open topology in particular. To see how they
work, recall that a topology determines notions of convergence and continuity. Specifically,

a sequence of Lorentz metrics
m
g ∈ L(M) converges to a Lorentz metric g ∈ L(M) just in

case the sequence is eventually contained in every open neighborhood of g. Geroch’s first
example is a sequence that seems like it should converge to Minkowski spacetime but in fact
does not. Explicitly, the sequence of metrics

m
gab =

(
1 +

1

m2 + x2 + y2 + z2

)
(dat)(dbt)− (dax)(dbx)− (day)(dby)− (daz)(dbz) (3)

on R4, where t, x, y, z are scalar coordinate fields, does not converge as m → ∞ to the
Minkowski metric

ηab = (dat)(dbt)− (dax)(dbx)− (day)(dby)− (daz)(dbz), (4)

even though the “bump,” remaining centered at the coordinate origin, decreases in amplitude

to zero. Now
m
g → η in the C0 open topology if and only if for every neighborhood of the

form B0(η, ε;h), we have
m
g ∈ B0(η, ε;h) for m sufficiently large. Pick

hab = (1+x2 +y2 +z2)2

(
∂

∂t

)a (
∂

∂t

)b

+

(
∂

∂x

)a (
∂

∂x

)b

+

(
∂

∂y

)a (
∂

∂y

)b

+

(
∂

∂z

)a (
∂

∂z

)b

,

8This is the condition that for any timelike vector ξa at any point of M ,
(
Tab − 1

2Tgab

)
ξaξb ≥ 0, where

Tab is the stress-energy tensor and T is its trace. See Hawking and Ellis [1973, p. 95] or Malament [2012,
p. 166].
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so that

d(η,
m
g ;h, 0) = [hachbd(ηab −

m
gab)(ηcd −

m
g cd)]

1/2 =
(1 + x2 + y2 + z2)2

m2 + x2 + y2 + z2
.

However, for any choice of m, the supremum of this expression over the whole manifold does
not exist, so the sequence does not converge to Minkowski spacetime.

Geroch’s second example is the one-parameter family

Λ = {λgab : λ > 0}, (5)

with a fixed gab on a non-compact M , which strikingly does not trace out a continuous
curve in the C0 open topology—indeed, it is everywhere discontinuous because its subspace
topology is discrete. Now, the family is continuous in the C0 open topology if and only if
for every λ0 > 0 and every neighborhood of the form B0(λ0g, ε;h), there is a positive open
interval I 3 λ0 such that {λgab : λ ∈ I} ⊆ B0(λ0g, ε;h). So consider an arbitrary δ ∈ R. We
have that

d(λ0g, (λ0 + δ)g;h, 0) = [hamhbn(λ0gab − (λ0 + δ)gab)(λ0gmn − (λ0 + δ)gmn)]
1/2

= |δ|(hamhbngabgmn)1/2.

Unless δ = 0, one can easily choose hab so that this quantity has no supremum over the
whole manifold. But if δ = 0, then I = {λ0} and cannot be open. So the λgab cannot trace
out a continuous curve. The subspace topology TΛ on Λ induced by the open topology C0

is given by TΛ = {Λ ∩ U : U ∈ C0}. But as we have just shown, there are U ∈ C0 such that
if λgab ∈ U , then λ′gab /∈ U for λ′ 6= λ. Thus {λgab} ∈ TΛ, but the choice of λ was arbitrary,
so TΛ is discrete.

This example is particularly surprising because one can interpret the elements of Λ to
be physically equivalent, representing mere changes of units.9 In fact, one can prove quite
general results regarding the conditions under which a sequence converges or a family is
continuous in the open topologies. Specifically, the following is sketched by Golubitsky and
Guillemin [1973, p. 43–44]:

Proposition 1. Let g, {ng}n∈N be Lorentz metrics on a non-compact manifold M . Then
n
g → g in the open Ck topology iff there is a compact C ⊂M such that:

1. for sufficiently large n,
n
g|M−C = g|M−C; and

2.
n
g → g on C, i.e., considering C as a submanifold,

n
g|C → g|C in the open Ck topology.

9The example also demonstrates that the open topologies, like the other topologies that I will consider,
“over-represent” the physically possible Lorentz metrics on M since in general they represent isometric
spacetimes through distinct points. One can compensate for this defect somewhat by ensuring one constructs
only invariant topologies [Geroch, 1970, p. 281–2]: ones for which the pushforward map induced by any
element of the diffeomorphism group of M acts on L(M) as a homeomorphism. Indeed, all of the topologies
considered in this paper are invariant in this way.
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In other words, a sequence converges in the Ck open topology just in case its elements
eventually equal the limit point everywhere except at most on a compact set, a criterion
of convergence even stronger than uniform! (Virtually all manifolds of physical interest are
non-compact.) One can then use this theorem to prove a necessary condition for a family of
metrics to be continuous. (See §A.1 for the proof.)

Proposition 2. Suppose that L(M) is given the Ck open topology, with M non-compact. If
f : R → L(M) is continuous, then for every x0, x1 ∈ R, there is some compact C ⊂M such
that f(x0)|M−C = f(x1)|M−C.

Thus any pair from a continuous one-parameter family of metrics must always be equal
everywhere except at most on a compact set.10 Intuitively, one might picture the difference
between any such pair as a “bump in a rug” that the function f pushes around. Although
the bump may be bigger or smaller, wider or narrower, it always has compact support. This
is clearly a quite restricted class of continuous families.

Lerner is aware of Geroch’s examples and propositions 1 and 2 [Lerner, 1972], but demurs
regarding their significance. Regarding the continuity of examples like eq. 5, he writes
that “one-parameter families ought not even to [sic] be formulated in the context of [the
continuous Lorentz metrics], regardless of the topology” [Lerner, 1972, p. 45]. Thus Lerner
would insist radically that parameterized families of spacetimes are simply not useful, but
he gives no supporting argument why one should not reject the open topologies instead.
Regarding the non-convergence of sequences like eq. 3, he advises that

This is not a serious problem. In the first place, as Geroch [1969] points out, the
process of taking limits is not without ambiguity. Secondly, the limiting metric is
often one which, when maximally extended, determines a base manifoldM ′′ 6= M .
Thus the problem of limits is not well-posed . . . no matter which topology one uses.
[Lerner, 1973, p. 22, fn. 3]

To clarify, Geroch [1969], a version of whose positive proposal I consider in more detail
in §3, points out that the common practice of taking limits of spacetimes defined within a
particular coordinate system is ambiguous because “by changing coordinates, one can usually
obtain some quite different spacetime in the limit” [Geroch, 1969, p. 180]. By contrast, the
limits we are concerned with here—and the ones Geroch goes on to define—are coordinate-
independent, so this ambiguity does not arise. With regards to Lerner’s second point, one
may well object that it is a restriction of the formalism, not a ill-posedness on the part
of the limit, that precludes the treatment of cases of topology change in the limit. Thus
his conclusion that considerations from limits and continuity of families are irrelevant even
in the case of the open topologies seems unsupported. Consequently, Geroch’s examples
(eqs. 3 and 5) and their generalizations in propositions 1 and 2 should still give one pause
in considering the open topologies as canonical.

10In fact, one can prove this for families parameterized by any path-connected topological space. See §A.1.
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3 Geometric Continuity and the Compact-Open Topolo-

gies

Geroch [1969] has proposed a way of interpreting certain limiting relations entirely geometri-
cally through the continuity (smoothness, etc.) of certain fields. Roughly, in the simplest case
of a one-parameter family, one constructs a 5-dimensional manifold from the 4-dimensional
manifolds of the family “stacked” by their identifying parameter. More precisely, suppose

that one is given a family of metrics { tgab}t∈R on a fixed manifold M .11 Let M be a manifold
diffeomorphic to M × R and let ψ(t) : M → M be a family of embeddings. If we require
that the field t̃|(p,t) = (ψ

(t)
p )∗t̄ be smooth, where t̄ is a constant field on M of value t, then

we can define a symmetric field Γab on M with signature (+,−,−,−, 0) by stipulating that

(Γab)|(p,t) = (ψ
(t)
p )∗(

t
gab), hence Γab∇at̃ = 0, where ∇ is a fixed derivative operator satisfying

∇b∇at̃ = 0 and ∇aΓ
bc = 0.12 Now, for each p ∈M the points ψ(t)(p) for all t form a smooth

curve and the collection of all such curves for all p form a congruence on M. Thus there
is a vector field τa on M tangent to the curves of this congruence satisfying τa∇at̃ = 1.
This allows one at last to define a unique symmetric field Γab such that Γabτ

a = 0 and

ΓabΓ
bc = δca − τ c∇at̃.

13 With this construction in place, we can say that the family
t
gab on

M is continuous in the geometric sense when the corresponding field Γab is continuous ev-
erywhere on M. (Analogous definitions would apply to smoothness, etc.) One can similarly
define the limit of a sequence of metrics by embedding the sequence in a one-parameter fam-
ily. A strong appeal of the proposal is that it uses the natural, widely accepted geometrical
formulation of a relativistic spacetime to do the work of choosing the canonical topology.

It turns out that the topology determined by all the geometrically Ck families is the
well-known Ck compact-open topology,14 whose basis elements may be written as sets of the
form

Bk(g, ε;h,C) = {g′ : sup
C
d(g, g′;h, 0) < ε, . . . , sup

C
d(g, g′;h, k) < ε}, (6)

where g ranges over all Lorentz metrics, ε ranges over all positive constants, h ranges over
all positive definite (inverse) metrics, and C ranges over all compact subsets of M . In other
words:

Proposition 3. A family of Lorentz metrics { tg}t∈Ris Ck continuous in the geometric sense
iff it is continuous in the Ck compact-open topology.

For a proof, see §A.2.15 The essential difference between the open and the compact-open

11Geroch does not require that the metrics be defined on the same—or even homeomorphic—manifolds,
but we can confine attention to that case here.

12For those familiar with the geometrized formulation of Newtonian gravitation, ∇at̃ functions much like
the temporal metric and Γab like the spatial metric, except that the latter is only assumed to be smooth on
each t̃ = const. hypersurface. Thanks to Jim Weatherall for emphasizing this to me.

13This also parallels the construction of the covariant spatial metric in geometrized Newtonian gravitation.
Cf. fn. 12 and Malament [2012, p. 254, Proposition 4.1.12].

14In particular, the Ck compact-open topologies are the final topologies respectively associated with the Ck

geometrically continuous families, the unique topologies on L(M) that make the Ck geometrically continuous
families and no others continuous.

15In fact, this equivalence holds for base manifolds of any dimension ≥ 2 and families parameterized by
any connected, smooth manifold.
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topologies is that the former “control” behavior everywhere on the manifold whereas the
latter do so only on compact subsets.

Notably, one can show that, unlike with the open topologies, the sequence defined by eq. 3
converges to the Minkowski metric and the family defined by eq. 5 is continuous relative to
the Ck compact-open topologies. They are also attractive for having a number of other
interesting features. First, they coincide with the topology of Ck compact convergence—

that is, a sequence of metrics
n
g → g on M just when it and its partial derivatives to

order k (with respect to the Levi-Civita derivative operator compatible with an arbitrary
Riemannian metric on M) do so uniformly on each compact C ⊆M [Munkres, 2000, p. 283,

Theorem 46.2].16 Second, if a sequence of Ck metrics
n
g → g, then g is guaranteed to be at

least Ck as well [Munkres, 2000, p. 284, Corollary 46.6]. Third, there is a close connection
with homotopy. One can show that a family of Lorentz metrics is continuous in the Ck

compact-open topology iff they trace out Ck path in L(M). So, in a way, the Ck compact-
open topology encodes which Lorentz metrics can be continuously (to order k) deformed into
one another.17

Like with the open topologies, however, Geroch has criticized the general appropriateness
of the compact-open topologies in treating stability, contending that they rule counterintu-
itively on the sequence of metrics

m
gab =

(
1 +

m

1 + (x−m)2

)
(dat)(dbt)− (dax)(dbx)− (day)(dby)− (daz)(dbz) (7)

on R4, where t, x, y, z are natural scalar coordinate fields.18 “The ‘bump’ in the metrics be-
comes larger as it recedes to infinity,” he writes, but the “sequence does approach Minkowski
space in the [C0 compact-open] topology (because the metrics become Minkowskian in every
compact set).” However, “[i]ntuitively, we would not think of this sequence as approaching
Minkowski space” [Geroch, 1971, p. 71] (or presumably any spacetime at all). Geroch is
right that, given any ε > 0, one can find a sufficiently large m such that at some point of R4,
m
g differs from the Minkowski metric in its first component by more than ε. For example, let
η be the Minkowski metric on R4 (eq. 4) and consider any Riemannian (inverse) metric

hab = α

(
∂

∂t

)a (
∂

∂t

)b

+ β

(
∂

∂x

)a (
∂

∂x

)b

+ γ

(
∂

∂y

)a (
∂

∂y

)b

+ δ

(
∂

∂z

)a (
∂

∂z

)b

,

where α, β, γ, δ are smooth positive scalar fields, so that

d(η,
m
g ;h, 0) = [hachbd(ηab −

m
gab)(ηcd −

m
g cd)]

1/2 =
m|α|

1 + (x−m)2
. (8)

Since α is continuous, it is bounded on any compact C ⊂ R4, so for a given such C, there

is a sufficiently large m for which eq. 8 becomes as small as one likes, i.e.,
m
g → η. Since

16The compact-open topology coincides with the topology of compact convergence on a function space
when the range of the functions is a metrizable space [Munkres, 2000, p. 285–6], and the bundle of Lorentz
tensor over M , being a manifold, is metrizable.

17Equivalently, the family is continuous in the Ck compact-open topology just when the k-jets of the
family belong to the same path component.

18The formula for the first term is garbled in Geroch [1971, p. 71], but appears without error in Geroch
[1970, p. 280].
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Geroch suggests the sequence should not converge, he takes the C0 compact-open topology
to be too coarse.

This example is less convincing than his examples for the open topology, however. First
note that the appearance of a growing “bump” in the metric that spreads to infinity is
relative to the choice of h, which one could easily choose so that the “bump” instead appears
to diminish as it spreads. Second, it is instructive to compare eq. 7 with the sequence of
Maclaurin expansions of a real function like sin(x). For any particular finite-order expansion,
one can find a sufficiently large x such that the expansion, evaluated at this x, differs from
sin(x) by as much as one wishes. But if one fixes some compact neighborhood of the origin,
then the Maclaurin series converges uniformly on that neighborhood. Similarly, the sequence
given by eq. 7 converges to Minkowski spacetime because the C0 compact-open topology
corresponds with the topology of compact convergence. Just as the compact convergence
of Maclaurin expansions seems perfectly reasonable, it is not clear why the same cannot be
said in the case of sequences of Lorentz metrics.19

To Geroch’s credit, there are other counterintuitive features of the compact-open topolo-
gies that bear even more directly on stability. For example, consider Hawking’s theorem:
the existence of a global time function is equivalent to stable causality, an absence of closed
causal curves that is stable in the open C0 topology [Hawking, 1969]. The following propo-
sitions, proved in §A.3,20 illustrate comments of Hawking [1971, p. 396–7] and Hawking and
Ellis [1973, p. 198] that the compact-open topologies are not appropriate for the definition
of stable causality because their neighborhoods do not control the behavior of the metric
outside of their associated compact sets.

Proposition 4. Chronology violating spacetimes are dense in L(M) in any of the Ck compact-
open topologies.

The significance of this proposition can be seen through the following corollary.

Corollary 1. No Lorentz metric is stably causal in any of the Ck compact-open topologies
on L(M).21

In particular, according to the compact-open topologies, not only does Minkowski space-
time fail to be stably causal, but not having closed timelike curves is unphysical! Accord-
ingly, the analog of Hawking’s theorem fails. An alternative but equivalent definition of
stable causality brings out why: a spacetime (M, g) is stably causal with respect to the C0

open topology just when there is a metric g′ for which there are no closed causal curves and
whose light cones everywhere lie outside those of g. By contrast, when stable causality is
defined with respect to the C0 compact-open topology, the light cones of g′ need only lie

19It seems that Geroch’s intuition would require the “difference” between the limit point and the elements
of the tail of the converging sequence to eventually become small at every point, i.e., he would require some
notion of uniform convergence. I discuss one possibility for such a topology in §5.

20Although propositions 4 and 6 are stated for the case where dim(M) = 4, they are proved for dim(M) ≥ 3.
Proposition 5 holds for dim(M) ≥ 2.

21Cf. proposition 5.1 of Manchak [unpublished], which shows that each metric is homotopic to one that
violates chronology. As alluded to above, there is a close connection between homotopy and the compact-
open topologies: the Ck homotopy classes correspond with the path components of the Ck compact-open
topologies.
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outside of those of g on a compact subset of M , leaving the rest unconstrained and ripe for
the sprouting of closed causal curves.

Now, if (M, g) already contains a closed timelike curve γ : R → M , then one can pick
a local basis element Bk(g, ε;h,C) from any compact-open topology so that γ[R] ⊆ C and
ε is small enough so that all of its members’ light cones are sufficiently close to those of g
to still evaluate γ as everywhere timelike. Thus in contrast to the absence of stably causal
spacetimes, we have that:

Proposition 5. Every spacetime containing a closed timelike curve does so stably in any of
the Ck compact-open topologies.

In fact, according to the compact-open topologies, almost all spacetimes contain such
closed timelike curves, and almost none do not, as the next proposition and its corollary
show.

Proposition 6. Chronology violating spacetimes are generic in L(M) in any of the Ck

compact-open topologies.

Corollary 2. Chronological spacetimes are nowhere dense in L(M) in any of the Ck compact-
open topologies.

Insofar as we do not take having closed timelike curves to be a property that nearly all
spacetimes should share, these results militate against taking any compact-open topology as
canonical.

4 Methodological Contextualism

Any canonical topology on L(M) should have the ability to properly distinguish which se-
quences converge, which families are continuous, and which properties are stable or generic.
But as the previous two sections laid out, the two main classes of topologies in the litera-
ture fall short of these goals. The open topologies, advocated by Lerner, seem too fine to
treat convergence and continuity. The compact-open topologies, naturally suggested through
geometric continuity, seem too coarse for stable causality because their neighborhoods con-
trol behavior only on compact sets. Of course, that Geroch’s examples do evince genuine
problems for the former can well be challenged, and one may decide to bite the bullets of
propositions 1 and 2 or 4, 5, and 6, but this does not completely resolve the issue of how to
choose the canonical topology. Any proponent of a canonical topology must decide without
being ad hoc on which counterintuitive results to accept and are obliged to provide an ex-
planation as to why the intuitive features thereby denied do not have the significance they
seemed to.

But reminding oneself of the way these topologies are used suggests that one need not pick
any canonical topology at all. Examining the consequences of adopting one topology over
another is a part of the process of deciding which topology will be relevant for a given type
of problem. Hawking has emphasized as much: “A given property may be stable or generic
in some topologies and not in others. Which of these topologies is of physical interest will
depend on the nature of the property under consideration” [Hawking, 1971, p. 396]. Indeed,
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Geroch’s later writings (see fn. 7) have indicated the same. If different topologies correspond
to different ways one can specify how spacetimes are similar, it is not surprising that different
topologies would be natural choices for different kinds of questions if those questions bear
upon different kinds of properties. It thus seems best to accept a kind of methodological
contextualism, where the best choice of topology is the one that captures, as best as one can
manage, at least the properties relevant to the type of question at hand, ones that relevantly
similar spacetimes should share. Thus, in contrast to the canonicalist, I would demand that
particular choices of topology must be justified as much as one feasibly can.

Fortunately, one will expect that similar questions will tend to demand similar topologies,
so the process of justification need not be started afresh each time. In particular, one should
arrive at a particular choice of topology through reflective equilibrium, balancing intuitive
demands with mathematical implications, as the many examples and propositions of §2–3
did for the open and compact-open topologies. The more one can accumulate these kinds of
results, the more there will be relevant data at hand for a particular type of inquiry so that
one can make a sharper, better justified conceptual decision regarding which topology to use.
Sometimes this will lead one to reject initially promising and intuitive choices, and sometimes
it will reinforce them. One need not postulate that this reflective equilibrium lead to a stable
limit; even if one has accumulated many results in favor of using a particular topology for
some narrow type of inquiry, one should still be open to new facts and connections that will
disturb one’s equilibrium.22

There is a very general way to illustrate how the many demands of various types of
inquiries pull in different, sometimes incompatible directions. Recall that the stability of a
property depends on the existence of a certain open set. Thus it is in a sense easier for
a property to be stable in a finer topology, since there are more open sets available. In
particular, if a property is stable on a certain set in a given topology T , it is stable in
every topology finer than T . Similarly, recall that the convergence of a sequence depends
on certain aspects of every open neighborhood of its purported limit point. Thus it is in a
sense easier for a sequence to converge in a coarser topology, since there are fewer open sets
that must fulfill the proper role. In particular, if a sequence converges in a given topology
T , it converges in every topology coarser than T . Therefore considerations of stability and
convergence are in tension with each other: we would expect that some topologies are fine
enough for the stability of some properties but too fine for certain sequences to converge,
like with the open topology, or vice versa, like with the compact-open topology.

5 New Problems, New Hopes

Methodological contextualism about topologies—at least in the sense of allowing oneself to
pick the most appropriate topology for a given application instead of deciding on one in
advance—would make all the above worries associated with picking a canonical topology
moot. Without a canonical topology, however, stability itself does not directly settle any
conceptual questions about physicality. Indeed, the choice of an “intuitively appropriate”
topology itself does much of the work, because that choice builds into the formalism those
intuitions regarding how different spacetimes should be considered similar.

22Cf. the use of reflective equilibrium in moral theorizing [Schroeter, 2004].
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More work needs to be done, therefore, characterizing how particular choices of topology
may be appropriate for a given kind of question. In the case of stability, one may be able
to characterize classes of properties to which particular topologies are (in)sensitive, or the
range of topologies in which interesting properties, like stable causality, behave as one might
expect. (See the end of the appendix for a discussion of some possibilities for the compact-
open topologies.)

Are there topologies in which important theorems hold but which do not suffer the defects
of the open and compact-open topologies? Part of the difficulty in answering this question
stems from the small variety of topologies used in the literature. Theorems about the stability
and genericity of global properties generally use the open topologies (e.g., see Hawking and
Ellis [1973, p. 198], Lerner [1973], and Beem et al. [1996, Ch. 7]). Theorems about the
stability of Cauchy developments use variants on the coarser compact-open topologies (see
Hawking [1971, p. 398–9] and Hawking and Ellis [1973, p. 252–254]). Theorems concerning
the convergence of relativistic spacetimes to Newtonian spacetimes (e.g., Malament [1986])
use (implicitly) a point-open topology, which is even coarser.23

Now, there is a simple modification to the C0 open topology that makes the one-parameter
families defined by eq. 5 everywhere continuous while, unlike the compact-open topology,
still preventing the sequence defined by eq. 7 from converging. Take the basis elements of
the C0 open topology (eq. 2), but restricted only to bounded pairs (g, h), ones for which
supM d(g, λg;h, 0) < ∞ for any positive λ. This prohibits choosing a positive-definite h
scaled by a conformal factor that grows too rapidly, eliminating the open neighborhoods of
each Lorentzian g that forced the scale-factor families to be everywhere discontinuous. One
can show, moreover, that this topology lies between the open and compact-open topologies
in coarseness. However the sequence defined by eq. 3 still does not converge to Minkowski
spacetime according to this topology, so it still would not rule in the intuitively “right” way
according to Geroch.

But if further refinements are found that produce a topology satisfying Geroch’s desider-
ata, might that topology end up being satisfactory for all demands? If I allow for the
possibility that the methods available for picking an appropriate topology may single out
a unique choice, or perhaps very few, to what extent is methodological contextualism re-
ally distinguished from a slightly liberalized canonicalism? The answer is methodological.
The two positions are not distinct because of differing ends—whether to use one topology
or many—but because of their differing means: what grounds we might have to prefer one
topology over another, and whether those grounds need to be articulated. A canonicalist
holds that because there are definitive reasons always to choose a single topology (or per-
haps very few), there is no reason to say why that choice is appropriate for a given type
of inquiry. By contrast, the contextualist takes the relevant reasons to be provided by the
type problem at hand, not in advance, and that they should therefore be articulated and
reasonably defended. It bears emphasizing that the latter does not deny that there can be
principled reasons to pick out a certain topology, only that those reasons can ever be given
in enough generality to preclude attention to the details of the type of situation at hand. We
indeed be may be lucky for the sake of our economy of thought if a few topologies are always

23The point-open topologies are defined similarly to the compact-open topologies (eq. 6), but require the
suprema be taken over only finitely many points in each basis element instead of over compact sets.
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appropriate, but we should not obstruct the development of new ones if they fit particular
purposes better.

A Proofs of Propositions

A.1 Continuity and the Open Topologies

Proposition 7. Let X be any path-connected topological space, and suppose that L(M) is
given the Ck open topology, with M non-compact. If f : X → L(M) is continuous, then for
every x0, x1 ∈ X, there is some compact C ⊂M such that f(x0)|M−C = f(x1)|M−C.

Proof. The case where f is a constant function is immediate, so suppose otherwise and
pick arbitrary distinct x0, x1 ∈ X. By the definition of path-connectedness, there is a
continuous function f ′ : [0, 1] → X such that f ′(0) = x0 and f ′(1) = x1. Hence the function
f ′′ = f ◦ f ′ : [0, 1] → L(M) is continuous.

I claim that, given any r ∈ [0, 1], there is an open (relative to [0, 1]) interval Ir ⊆ [0, 1],
containing r, such that for any q ∈ Ir, there is some compact C(r, q) ⊂ M for which
f ′′(r)|M−C(r,q) = f ′′(q)|M−C(r,q). For suppose otherwise, and consider any sequence of intervals
I1
r ⊃ I2

r ⊃ . . . such that Inr ⊆ [0, 1] for each n and
⋂∞
n=1 I

n
r = {r}. One can then construct

by induction a sequence of metrics that converges to f ′′(r) but contradicts proposition 1.
For the base step, let Is1r = I1

r and note that there is some q1 ∈ Is1r distinct from r such
that f ′′(r)|M−C 6= f ′′(q1)|M−C for any compact C ⊂M . (One may choose q1 6= r because f ′′

is continuous.) For the inductive step, suppose Isn
r is given so that there is some qn ∈ Isn

r

distinct from r such that f ′′(r)|M−C 6= f ′′(qn)|M−C for any compact C ⊂M . Then pick some
Isn+1
r such that sn+1 > sn and qn /∈ Isn+1

r , noting that there is some qn+1 ∈ Isn+1
r distinct from

r such that f ′′(r)|M−C 6= f ′′(qn+1)|M−C for any compact C ⊂M . The induction is complete,
so by construction the sequence qn → r as n→∞, and for each n, f ′′(r)|M−C 6= f ′′(qn)|M−C
for any compact C ⊂ M . But because f ′′ is continuous, it follows that f ′′(qn) → f ′′(r) as
n → ∞ [Munkres, 2000, p. 130, Theorem 21.3], and by proposition 1, this implies in turn
that there is a compact C ⊂ M for which f ′′(r)|M−C = f ′′(qn)|M−C for sufficiently large n,
which is a contradiction.

Next, note that the {Ir : r ∈ [0, 1]} form an open cover of [0, 1] (relative to [0, 1]).
The interval is compact, so by definition there is some finite subcover {Iri : i = 1, . . . ,m},
each of whose elements has, for all q ∈ Iri , an associated compact C(ri, q) ⊂ M for which
f ′′(ri)|M−C(ri,q) = f ′′(q)|M−C(ri,q). One may assume, without loss of generality, that r1 <
. . . < rm and that, because the interval is one-dimensional, no point of [0, 1] is included in
more than two of the Iri . Thus pick any qi ∈ Iri ∩ Iri+1

for i = 1, . . . ,m− 1 and put q0 = 0
and qm = 1. Let C =

⋃
i=1,...,mC(ri, qi−1) ∪ C(ri, qi) and observe that

f(x0)|M−C = f ′′(0)|M−C = f ′′(q0)|M−C = f ′′(r1)|M−C = f ′′(q1)|M−C = · · ·
= f ′′(qm−1)|M−C = f ′′(rm)|M−C = f ′′(qm)|M−C = f ′′(1)|M−C = f(x1)|M−C .

But C is compact and x0, x1 were arbitrary, so the proof is complete.
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Proposition 2 then follows as a special case. Note that, if X is instead a space with
multiple path components, the same proof goes through for each path component, but then
elements of different path components need not be equal on a co-compact set.

A.2 Equivalence of Geometric Continuity and Compact-Open Con-
tinuity

To show that the Ck geometric continuity of a family of metrics is equivalent to its continuity
in the Ck compact-open topology, it will be helpful to use an alternative characterization
of the latter using fiber bundles. In particular, I will use the bundle of Lorentz tensors
over M , which I will denote L̂(M), and the k-jet bundle of cross sections of L̂(M), denoted
Jk(M, L̂(M)). The k-jet of a cross-section ĝ at p ∈ M , denoted jkĝ|p, is the equivalence
class of sections whose partial derivatives in an arbitrary coordinate system at p are equal
to those of ĝ up to order k.24 The Ck compact-open topology then has as a subbasis sets of
the form

Ok(C,U) = {g : jkĝ[C] ⊆ U}, (9)

where C ranges over all compact subsets of M and U ranges over all open sets of the manifold
topology of Jk(M, L̂(M)). Thus there is a canonical bijection between the Ck compact-open
topology on Lorentz metrics given by eq. 6 and the (C0) compact-open topology on the k-jets
of these metrics, considered as cross-sections.

The desired equivalence is essentially a corollary of the following theorem (adapted from
Munkres [2000, p. 287, Theorem 46.11]).

Proposition 8. Let X and Y be topological spaces, and give the set of continuous func-
tions from X to Y , denoted C(X, Y ), the (C0) compact-open topology. If f : X × Z → Y
is continuous, then so is the induced function F : Z → C(X, Y ) defined by the equation
(F (z))(x) = f(x, z). The converse holds if X is locally compact25 and Hausdorff.

In fact, in using proposition 8 one need not even restrict attention to four-dimensional
base manifolds or one-parameter families. Any family parameterized by a smooth, connected
manifold will do, and the procedure for constructing the manifold analogous to M is the
same, only instead of having a metric of defect one, the defect will be the dimension of the
parameterizing manifold.

Proposition 9. A family of Lorentz metrics {xg}x∈X on M parameterized by a smooth,
connected manifold X is Ck continuous in the geometric sense iff it is continuous in the Ck

compact-open topology.

Proof. Let n = dim(M) and m = dim(X). Suppose that the family
x
gab is Ck continuous in

the geometric sense. Each (n+m)-dimensional metric Γab corresponds to a cross-section Γ̂ of a
bundle Γ(M) of (n+m)-dimensional metrics overM, whose partial derivatives to order k are
encoded in the k-jet jkΓ̂. Then the smooth bundle map φ : Jk(M,Γ(M)) → Jk(M, L̂(M))
induced by the projection π : M → M can be composed with Γ̂ to yield the function

24For more on jets and their bundles, see Golubitsky and Guillemin [1973, Ch. 2.2].
25A topological space is locally compact when each point has a compact neighborhood.
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f = φ ◦ Γ̂ : M ∼= M × X → Jk(M,L(M)), which is Ck because Γ̂ is Ck by hypothesis.

Proposition 8 then entails that the map F : X → C(M,Jk(M, L̂(M))) defined by F : x 7→ jk
x

ĝ
is continuous. But the range of F is just the set of k-jets of cross-sections of L̂(M) with
the (C0) compact-open topology, which is canonically bijective with the Ck compact-open
topology on Lorentz metrics.

Conversely, suppose that the family
x
gab is continuous in the Ck compact-open topology,

or equivalently, that the map F : X → C(M,Jk(M, L̂(M))) defined by F : x 7→ jk
x

ĝ is
continuous, where C(M,Jk(M, L̂(M))) is given the (C0) compact-open topology. Since M is
locally compact and Hausdorff, proposition 8 entails that the map f : M×X → Jk(M, L̂(M))

is continuous. Thus (
x
gab)|p is jointly Ck in x and p.

Let ψ(x) : M →M denote the embeddings that yield the (inverse) metric Γab, which is
Ck when, for any smooth field αab on M, αabΓ

ab is Ck. Now for any p ∈ M and x ∈ X,

(αabΓ
ab)|ψ(x)(p) = (ψ

(x)
p )∗(αab)

x
gab; by assumption (ψ

(x)
p )∗(αab) is smooth; and

x
gab is Ck because

its inverse is. Thus Γab is Ck, so Γab must be Ck by construction.

Proposition 3 then follows as a special case.

A.3 Stable Causality and the Compact-Open Topologies

The proof of proposition 4 first requires a lemma allowing one to “interpolate” between any
spacetime and a chronology-violating region of Gödel spacetime.26 This interpolation can
be effected outside of any compact set, which ruins any compact-open topology’s ability to
control it.

Lemma 1. Let (M, g) and (M ′, g′) be two spacetimes, with dim(M) = n and M ′ = Rn. For
any embedded submanifold S ⊂ M and any compact embedded submanifold R ⊂ M ′ with
dim(S) = dim(R) = n, there is a spacetime (M, g′′) such that g′′|M−S = g|M−S and g′|R is
isometric to g′′|U for some compact U ⊂ S.

Proof. Pick a chart (V, ϕ) of M such that V ⊆ S and ϕ[V ] is an open ball of radius 4, i.e.,
ϕ[V ] = BRn(~0, 4) = {~x ∈ Rn : ‖~x‖ < 4}, where ‖ ·‖ is the Euclidean norm on the coordinates
~x ∈ Rn. For brevity, define Ai = ϕ−1[BRn(~0, i)] for i = 1, 2, 3, and let r be a scalar field on V
defined by r|p = ‖ϕ(p)‖. Finally, define a diffeomorphism ψ : M ′ → V such that ψ[R] ⊂ A1

and put U = ψ[R], which must be compact since ψ is continuous.
Because all Lorentz metrics on Rn are homotopic [Finkelstein and Misner, 1959], ψ∗(g

′)
is homotopic to g|V , considering V as a submanifold. Thus there is some continuous function
f : [0, 1] → L(V ) such that f(0) = ψ∗(g

′) and f(1) = g|V . One can then define the continuous
Lorentz metric

γ|p =


g|p, p ∈M − A3,

f(r|p − 2)|p, p ∈ A3 − A2,

[ψ∗(g
′)]|p, p ∈ A2.

In order to produce the desired smooth metric g′′, one can convolve γ with an appropriate
positive, symmetric mollifier on the region V − A1. In more detail, define w : R → R to be

26For more on the properties of Gödel spacetime, see Malament [2012, Ch. 3.1].
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the smooth function

w(x) =

{
ce−1/(1−x2), |x| < 1

0, |x| ≥ 1,

where c is a positive constant chosen so that
∫

Rw(x)dx = 1. Further, define W : Rn ×
[0,∞) → R as the jointly smooth function W (~x, δ) = δ−nw(‖~x‖/δ), where W (~x, 0) =
limδ→0W (~x, δ) is the Dirac delta, the convergence being understood in the distributional
sense. Now, one can express γ in terms of its matrix components γαβ(~x) determined by the
chart (V, ϕ), allowing one to define on ϕ[V − A1] for some fixed δ the new components

γ̃αβ(~x) =

∫
ϕ[int(V−A1)]

W (~x− ~y, eδc−1w(‖~x‖ − 5/2))γαβ(~y)d~y, (10)

which are smooth on ϕ[V − A1].
27 Moreover, for sufficiently small δ, the γ̃αβ approximate

the γαβ arbitrarily well on V − A1.
28 Therefore such γ̃αβ are the components of a smooth

Lorentz metric γ̃ on V − A1. Note that, in the integrand of eq. 10 the function W becomes
the Dirac delta for ‖~x‖ ≥ 7/2 and ‖~x‖ ≤ 3/2, so on the points of V corresponding to these
coordinate regions, γ̃ is equal to g and ψ∗(g

′), respectively. We can define at last

g′′|p =


g|p, p ∈M − V,

γ̃|p, p ∈ V − A1,

[ψ∗(g
′)]|p, p ∈ A1.

By construction, g′′|M−S = g|M−S since M − S ⊆ M − V and g′′|U is isometric to g′|R since

g′′|A1
= [ψ∗(g

′)]|A1 and U = ψ[R] ⊂ A1.

If one picks (M ′, g′) to be Gödel spacetime and R to be a region containing closed timelike
curves, then, following Manchak [unpublished], one can use the construction of g′′ above to
show that any spacetime (of dimension at least three) is homotopic to one containing closed
timelike curves in a compact region. This answers positively some questions posed by Stein
[1970, p. 594], although the construction says little about how realistic such spacetimes are.
Nevertheless, it is essentially this idea that is used to prove the following.

Proposition 10. For any manifold M , if dim(M) ≥ 3, chronology violating spacetimes are
dense in L(M) with any of the Ck compact-open topologies.

Proof. Any spacetime for which M is compact contains closed timelike curves [Hawking and
Ellis, 1973, Prop. 6.4.2, p. 189], so suppose M is non-compact. Let an arbitrary Lorentz
metric g on M be given, and note that any neighborhood thereof in the Ck compact-open
topology contains a set of the form Bk(g, ε;h,C). Pick S = M −C so that by lemma 1 there
is a metric g′ such that g′|C = g|C and g′|U is isometric to a chronology violating region of

Gödel spacetime for some U ⊂M −C. Thus g′ ∈ Bk(g, ε;h,C) and violated chronology, but
the choice of g and its neighborhood was arbitrary, so the chronology violating spacetimes
are by definition dense in L(M).

27Cf. the proof in Oden and Reddy [1976, Theorem 2.6, p. 48–49], beyond which nothing new is needed.
28Oden and Reddy [1976, Theorem 2.7, p. 49] show that, for the case where the integrand contains

W (~x− ~y, δ) with a fixed δ, the analog of eq. 10 would converge to γαβ as δ → 0 in Lp(ϕ[int(V −A1)])-norm.
As before (cf. footnote 27), allowing δ to smoothly vary introduces no new complications.
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Proposition 4 and its corollary then follow as a special case. The proof of proposition 5
is a straightforward computation:

Proposition 11. If (M, g) contains a closed timelike curve, then g is stably chronology
violating in every compact-open topology.

Proof. Fix any positive definite metric hab and note that one can write gab = hamµ
mhbnµ

m−
hab for some smooth vector field µa [Hawking and Ellis, 1973, p. 39]. One can thus express
that γ : I → M is a closed g-timelike curve with tangent vector ξa as the condition that
|habξaµb||γ[I] > (habξ

aξb)
1/2
|γ[I]. Pick

ε = inf
γ[I]

min

{
1,

(
|habξaµb|

(habξaξb)1/2
− 1

)2
}
,

and consider any g′ ∈ B0(g, ε;h,C), where γ[I] ⊆ C. Writing g′ab = hamµ
′mhbnµ

′m− hab, γ is

g′-timelike just in case |habξaµ′b||γ[I] > (habξ
aξb)

1/2
|γ[I]. Now, one can calculate that

hamhbn(gab−g′ab)(gmn−g′mn) = hamhbn(µ
aµb−µ′aµ′b)(µmµn−µ′mµ′n) = [hab(µ

a−µ′a)(µb−µ′b)]2,

so putting ηa = µ′a − µa yields that supC habη
aηb < ε. The remaining calculations involve

fields defined on γ[I], so the subscript indicating as much will be omitted. It follows from
this inequality and the Cauchy-Schwartz inequality that

|habξaηb| ≤ (habξ
aξb)1/2(habη

aηb)1/2 < (εhabξ
aξb)1/2 ≤ (habξ

aξb)1/2, (11)

where the last inequality uses the fact that, by definition, ε < 1. Then the reverse triangle
inequality entails that

|habξaµ′b| = |habξa(µb + ηb)| ≥
∣∣|habξaµb| − |habξaηb|∣∣ = |habξaµb| − |habξaηb|,

where the last equality follows since |habξaµb| > (habξ
aξb)1/2 > |habξaηb| by the hypothesis

and equation 11. Thus

|habξaµ′b| > |habξaµb|−(εhabξ
aξb)1/2 ≥ |habξaµb|−(habξ

aξb)1/2

∣∣∣∣ |habξaµb|
(habξaξb)1/2

− 1

∣∣∣∣ = (habξ
aξb)1/2.

Thus γ is g′-timelike, but g′ was arbitrary so each element of B0(g, ε;h,C) contains a closed
timelike curve. Since B0(g, ε;h,C) is open in every Ck compact-open topology, g must be
stably chronology violating in each.

This result extends immediately to any topology finer that the compact-open topologies,
but that extension is not needed to prove proposition 6:

Proposition 12. For any manifold M , if dim(M) ≥ 3, then chronology violating spacetimes
are generic in L(M) for every compact-open topology.
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Proof. Every spacetime with a compactM contains timelike curves [Hawking and Ellis, 1973,
Prop. 6.4.2, p. 189], so suppose M is non-compact. We construct an open dense subset of the
non-chronological spacetimes as follows. First, select any neighborhood N(g) of an arbitrary
g, which must contain a set of the form Bk(g, ε;h,C). Letting S = M − C, by lemma 1
there is some g′ ∈ N(g) such that g′|U is isometric to a chronology violating region of Gödel
spacetime for some compact U ⊂M −C. By proposition 11, there is an open neighborhood
of g′ consisting only of chronology violating metrics. Let Ak(g,N(g), Bk) be the union of
all such open neighborhoods determined by the choices of g, N(g), and Bk(g, ε;h,C), and
consider A =

⋃
g

⋃
N(g)

⋃
Bk
Ak(g,N(g), Bk). By construction, (1) every neighborhood N(g)

of each g contains an element of A, i.e., A is dense in L(M); (2) A is open, being the union
of open sets; and (3) A contains only chronology violating spacetimes. So by definition the
chronology violating spacetimes are generic in L(M).

Corollary 3. For any manifold M , if dim(M) ≥ 3, chronological spacetimes are nowhere
dense in L(M) for each compact-open topology.

Proof. The complement of the open dense subset A constructed above contains the chrono-
logical spacetimes and must be nowhere dense. Since subsets of nowhere dense sets are
nowhere dense, the chronological spacetimes in particular are nowhere dense.

Both proposition 6 and its corollary then follow as special cases.
One may be struck by how few details of the closed timelike curves figure in the above

proofs. Indeed, the crucial aspect of the compact-open topologies that allows this is the
fact that its neighborhoods do not control the behavior of metrics beyond a compact set.
Thus I suspect that one should be able to generalize the above propositions to characterize
general classes of properties that are dense, generic, or nowhere dense in the compact-open
topologies. However, the usual classification of spacetime properties into local and global
[Manchak, 2011, p. 413] is too broad for these purposes. This classification takes a property
P of a spacetime (M, g) to be local iff all spacetimes locally isometric to (M, g) also have P ,
and global otherwise. Thus both the topology of M and the existence of a closed causal curve
are global properties, whereas only the latter has any hope of having an analog to proposition
6. The difference seems to be that the properties of concern here can be instantiated on co-
compact subsets of M for proposition 4, concerning density, and on compact subsets for
propositions 5 and 6, concerning stability and genericity.

References

Beem, John K., Paul E. Ehrlich and Kevin L. Easley. Global Lorentzian Geometry. 2nd ed.
New York: Marcel Dekker, 1996.

Earman, John. Bangs, Crunches, Whimpers, and Shrieks. New York: Oxford UP, 1995.

Finkelstein, David and Charles W. Misner. “Some New Conservation Laws,” Annals of
Physics 6: 230–243 (1959).

Fletcher, Samuel C. “What counts as a Newtonian system? The view from Norton’s dome,”
European Journal for Philosophy of Science 2.3: 275–297 (2012).

18



Geroch, Robert. “Limits of Spacetimes,” Communications in Mathematical Physics 13: 180–
193 (1969).

Geroch, R. “Singularities,” Relativity. Ed. Moshe Carmeli, Stuart I. Fickler, and Louis Wit-
ten. New York: Plenum, 1970.

Geroch, Robert. “General Relativity in the Large,” General Relativity and Gravitation 2.1:
61–74 (1971).

Geroch, Robert. Mathematical Physics. Chicago: University of Chicago Press, 1985.

Golubitsky, Martin and Victor Guillemin. Stable Mappings and their Singularities. New York:
Springer, 1973.

Hawking, S.W. “The Existence of Cosmic Time Functions,” Proc. R. Soc. Lon. A 308: 433–
435 (1969).

Hawking, S.W. “Stable and Generic Properties in General Relativity,” General Relativity
and Gravitation 1.4: 393–400 (1971).

Hawking, S.W. and G.F.R. Ellis. The large scale structure of space-time. Cambridge: Cam-
bridge University Press, 1973.

Lerner, David E. The Space of Lorentz Metrics on a Non-Compact Manifold. PhD disserta-
tion: University of Pittsburgh, 1972.

Lerner, David E. “The Space of Lorentz Metrics,” Communications in Mathematical Physics
32: 19–38 (1973).

Lerner, D. and J.R. Porter. “Weak gravitational fields,” Journal of Mathematical Physics
15: 1413–1415 (1974).

Malament, David B. “Newtonian Gravity, Limits, and the Geometry of Space,” From Quarks
to Quasars. Ed. Robert G. Colodny. Pittsburgh: University of Pittsburgh Press, 1986.

Malament, David B. Topics in the Foundations of General Relativity and Newtonian Gravi-
tation Theory. Chicago: University of Chicago Press, 2012.

Manchak, John. “What Is a Physically Reasonable Spacetime?” Philosophy of Science 78:
410–420 (2011).

Manchak, John. “A Note on ‘Nearby’ Universes,” unpublished manuscript.

Munkres, James R. Topology. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2000.

Norton, John. “The Dome: An Unexpectedly Simple Failure of Determinism,” Philosophy
of Science 75: 786–798 (2008).

Oden, J.T. and J.N. Reddy. An Introduction to the Mathematical Theory of Finite Elements.
New York: Wiley, 1976.

19



Schroeter, François. “Reflective Equilibrium and Antitheory,” Noûs 38.1: 110–134 (2004).
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