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Abstract

I describe how relativistic field theory generalises the defining prop-
erty of material systems to possess mass to the requirement of them
having a mass-energy-momentum density tensor 7}, (energy tensor
for short) associated with them. I argue that according to general
relativity T}, is not an intrinsic property of matter, looking at how
the energy tensor for a relativistic material system can be derived in a
Lagrangian framework. It will become evident that the matter fields
® alone are not sufficient for such a derivation. The metric field g,
plays a prominent role in obtaining the energy tensor of a material
system, and occurs explicitly in a generic T},,. Accordingly, since g,,,,
represents the geometry of spacetime itself, the properties of mass,
stress, energy and momentum should not be seen as intrinsic proper-
ties of matter, but as relational properties that material systems have
only in virtue of their relation to spacetime structure.
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1 Introduction

In the Stanford Encyclopaedia for Philosophy, in the entry “Intrinsic and
Extrinsic properties”, Weatherson [2007] writes:

I have some of my properties purely in virtue of the way I am.
(My mass is an example.) I have other properties in virtue of
the way I interact with the world. (My weight is an example.)
The former are the intrinsic properties, the latter are the extrinsic
properties.

The claim that mass is intrinsic is initially plausible. But concepts like ‘mass’
and ‘weight’ are surely not theory-independent. I will argue in this article
that although the mass density p of a material object is arguably an intrinsic
property in Newtonian physics, this is not the case for the property that takes
over the role of p in general relativity, viz. the mass-stress-energy-momentum
density tensor T},,.! Nevertheless, the non-vanishing of an energy tensor T,
at a point will turn out to be a necessary and sufficient condition for this
point to be occupied by matter.?

'For simplicity, I will often just speak of the ‘energy-momentum tensor’ or even just of
the ‘energy tensor’ of a material system, rather than of a mass-stress-energy-momentum
density tensor. Note that T}, is not a tensor density in the mathematical sense: like the
scalar field p in Newtonian theory, it is a tensor that represents a physical density, rather
a mathematical object that transforms as a tensor density.

2Friedman has already suggested that “In a relativistic context the proper represen-
tative of matter is not the mass-density p but the total stress-energy density T”; see
Friedman [1983], p.222. Friedman goes on to argue that the non-vanishing of 7},, should
be seen as the criterion for a spacetime point to be “occupied”, while claiming that we
should still speak of ‘empty spacetime’ if the (geo)metric tensor field g, is the only non-
vanishing tensor field defined on the spacetime manifold M. Hence, Friedman foreshadows
the post-hole argument discussion, arguing that (A, g,.,,) represents spacetime (cf. Hoefer
[1996] and Pooley [forthcoming]), rather than just M (Earman and Norton [1987]).
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Before I make this more precise, let us see how 7}, enters the theory of
general relativity (GR). It is right at the core of the theory, in the Einstein
(field) equations

1
R,uu - §g,usz = KET,LLI/ ) (1>
which should be compared to the Poisson equation of Newtonian gravita-

tional physics:

Vip=knp . (2)

Within their respective theories, both the Poisson equation and the Einstein
equations are supposed to describe how gravity, represented by the left side
of the respective equation, and matter, represented by the right side, interact
with each other.?

In the Poisson equation (2), we have the second derivative of the grav-
itational potential ¢ on the left-hand side and the mass density p on the
right-hand side. For the Einstein equations (1), the left-hand side is formed
by the Ricci curvature tensor R, the Ricci scalar R and the metric tensor
Guv; the former two being defined in terms of the latter.?

I will argue that while in Newtonian theory p is a fundamental field
representing an intrinsic property of matter, this is not so for 7}, in GR: the
energy tensor 7),, is in important ways less fundamental than the metric field
g,v- Historically, an idea that the reverse was the case was very important

3The custom in relativity theory is to include radiation like the electromagnetic field
when speaking of ‘matter’; I will deliver a justification of this choice of words in section
2. Although this article is mostly about the right-hand sides of the above equations, one
note on their left-hand sides: while the left-hand side of the Poisson equation describes
the gravitational field just like any other field, the left-hand side of the Einstein equations
is often claimed to describe both the geometry of spacetime and the gravitational field. In
Lehmkuhl [2008], I discussed the ways in which this alleged double role can be understood,
and so I will not rehearse the discussion here. I do indeed think that the main issues
discussed do not depend on whether one sees the metric field g,, as representing the
geometry of physical spacetime, as ‘just another field, not intrinsically different from the
electromagnetic field’, or as both at once. I will sometimes call g, ‘the geometry of
spacetime’, but people who do not like that and the ontological flavour this carries should
just substitute for it ‘the gravitational field’ or ‘the metric field’, without this altering the
points made in this article.

4Both equations also contain coupling constants, ky = —47G and kg = 8g4G, where
the latter is obtained by demanding that the Einstein equations should go over into the
Poisson equation in the non-relativistic limit.
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for Einstein up until 1921; the idea he called ‘Mach’s principle’. In Einstein
[1918], p.38, he expresses this in the following way:®

Mach’s principle: The [g,,]-field is fully determined by the masses
of bodies. Since according to the results of the special theory
of relativity mass and energy are the same, and since energy is
formally described by the symmetric energy tensor (7,,), Mach’s
principle says that the [g,,]-field is constrained and determined
by the energy tensor.

Einstein’s formulation of Mach’s principle is often taken as indicating his
commitment to a Leibnizian/relationalist programme: spacetime was sup-
posed to be secondary to material objects.® Famously, GR does not fulfil
Mach’s principle as defined above; for example, the original gravitational
field equations (1) allow empty Minkowski spacetime as a solution, among
many other matter-free solutions. Even the modified field equations in which
Einstein introduced the cosmological constant A\ in order for them to accord
with Mach’s principle turned out to allow for non-trivial solutions even if
T, = 0.7 Furthermore, the left-hand side of the Einstein equations rep-
resents only part of the geometric structure — the Ricci curvature R, —
whereas the Weyl curvature C),,4,, is only constrained but not determined by
the energy tensor 7),,,.

We will see that even if knowing the energy tensor did uniquely deter-
mine the geometric structure, and hence if Einstein’s formulation of Mach’s
principle was fulfilled, there would still be no reason to regard matter as more
fundamental than spacetime in the theory. In other words, the criterion of
fundamentality embodied in Mach’s principle will turn out not to be suffi-
cient for matter to be more fundamental than spacetime. For the only thing

5 Machsches Prinzip: Das G-Feld ist restlos durch die Massen der Kérper bestimmt.
Da Masse und Energie nach den Ergebnissen der speziellen Relativitatstheorie das Gleiche
sind und die Energie formal durch den symmetrischen Energietensor (7,,) beschrieben
wird, so besagt dies, dass das G-Feld durch den Energietensor bedingt und bestimmt sei.
(My translation.)

In a footnote, Einstein points out that up to the publication of this article (in 1918),
he had not distinguished between what he now called Mach’s principle and the relativ-
ity principle. In Einstein [1918], p.38, the relativity principle is defined in the following
way (which is quite different to his earlier formulations): “The laws of nature are state-
ments about spatio-temporal coincidences; hence they find their only natural expression
in generally covariant equations.”

"See Hoefer [1994] for details.
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that would really suggest that either matter or geometry was more funda-
mental would be if the existence of one was a requirement for the existence
of the other but not vice versa. We will see that spacetime can exist with-
out matter, whereas systems cannot possess mass-energy-momentum density
without spacetime structure being in place.

[ will start out in section 2 by arguing that what we mean (or should
mean) by ‘a material system’ when taking into account relativistic field theory
is a system for which the fields ® describing its fundamental properties have
a mass-energy-momentum tensor 7,, associated with them and only thereby
deserve to be called matter fields. In section 3, I will then show that an energy
tensor 7T}, typically needs both a matter field ® and the metric field g, in
order to be defined, and that hence the main property of matter depends
on a relation between matter fields and spacetime structure; whereby mass-
energy-momentum turns out to be a relational property of matter.®

2 The concept of matter in relativistic field
theory

Back in the 17th century, there were two important opinions about the nature
of matter, about the property that made something material. Descartes
claimed that it was the property of being extended, whereas Newton argued
that it was the property of possessing mass, or rather inertial mass. Physics
followed the direction outlined by Newton. Arguably the reason for this
development is that the physics Newton proposed and into which his idea
about the nature mof matter was embedded simply was much more successful
empirically than Descartes. But the idea also has a lot of intuitive force.
Imagine standing in front of a house, an (unsurprisingly) spacially extended
house. You stretch out your hand to get a hold of the doorknob — and your
hand goes right through. You do not feel any resistance, no inertia and hence
have no sense of touch. Would you think of it as a house? Maybe. But would
you think of it as a material house? Probably not, you might think of it as a

8Section 4.2 will also discuss an alternative perspective, according to which mass-
energy-momentum is an intrinsic property of systems containing matter. But here also,
systems can only possess this property if they contain a metric field g,,, and at least one
matter field ®, and if g, and ® stand in a certain relation that ‘gives rise’ to the system
possessing mass-energy-momentum. The nature of the relation holding between matter
fields and metric field is pinned down in section 3.



2 THE CONCEPT OF MATTER IN FIELD THEORY 6

ghost house at best. Then again, imagine a particle, a point particle like the
electron that has no (so far) measurable extension but which does possess
mass. Do you think of it as material? Probably. For it can push things, it
has mass and hence the potential to posses energy and momentum. (These
colloquial statements will be made more precise in subsequent sections.)

Then, at the end of the 19th century, something surprising happened: one
found that electromagnetic fields can push things as welll More precisely,
Maxwell, Poynting, Heaviside and J.J. Thomson, building on earlier ideas
by W.Thomson and Faraday, found that an electromagnetic field possesses
energy and momentum (but no rest mass). After this, physicists came to
think of electromagnetic fields as something like matter. Some even tried
to reduce ‘ordinary’ matter to electromagnetic fields, thinking of the inertial
mass possessed by an electron as something to be derived by assuming that
it is only a particular configuration of an electromagnetic field. This was
part of the electromagnetic programme of Abraham and Mie — ultimately
unsuccessful but once one of the biggest hopes of theoretical physics.”

While the electromagnetic programme was still at its high-point, some-
thing surprising happened yet again. The special theory of relativity (SR)
was discovered /created, and with it electromagnetic fields, particles and ma-
terial continua (like extended bodies and fluids) could be described in a
framework that made them look even more like the same kind of thing. For
all the previously separate properties mentioned above could be encoded by
the special-relativistic mass-energy-momentum density tensors.

2.1 A short and incomplete history of energy-momentum
tensors

Einstein had formulated special relativity (Einstein [1905a]) and shown that
an important consequence of it was the famous connection (or ‘equivalence’)
between energy and inertial mass (Einstein [1905b]). Minkowski provided
a 4-dimensional reformulation of the theory (Minkowski [1908a,b]), showing
that the Lorentz-transformations are analogous to rotations in 4-dimensional
spacetime. As a consequence, coordinates were written in a manner analo-
gous to 4-vectors, with three space- and one time-component — and with

9For more on the positions of Newton and Descartes see Jammer [1961]; for a concise
summary of Abraham’s and Mie’s programme and its relation to GR and unified field
theories see Vizgin [1994].
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them, all the fundamental quantities of the theory were rewritten in such a
way. Most importantly for us, 3-momentum and mass/energy were shown to
be components of a 4-vector with mass/energy occupying the ‘time-slot’ of
the vector.

In pre-relativistic physics, it was already well-known that a momentum
3-vector and a scalar quantity describing mass and/or energy, while suffi-
cient for describing point particles, were not sufficient for describing con-
tinuum matter. In order to do that, quantities describing energy densities,
energy current densities, momentum densities and momentum current densi-
ties within the continuum were needed. In 1905, there was already a sophis-
ticated non-relativistic theory describing these quantities for the paradigm
cases of classical continuum matter — extended bodies with internal stress,
fluids, and electromagnetic fields.

Conceptually, the natural first step to generalise the energy-momentum
4-vector of a free particle would have been to search for a quantity describ-
ing the energy-momentum properties of a system of many particles — i.e.
to develop the relativistic dynamics of stressed bodies and fluids. However,
in the early days, special relativity was very closely associated with elec-
trodynamics, and so one of the first tasks Minkowski set himself was to
give a 4-dimensional reformulation of relativistic electrodynamics (Minkowski
[1908b]).

In doing so, he showed that the energy (current) density, momentum
(current) density and stress associated with the electromagnetic field in pre-
relativistic physics can be seen as components of a second-rank tensor 7}, the
mass-stress-energy-momentum tensor density of the electromagnetic field.!°
It was mostly through the work of Max von Laue that Minkowski’s way of
constructing an energy tensor was extended from electromagnetism to ‘ordi-
nary matter’ like extended stressed bodies, incoherent dust, and relativistic
fluids (von Laue [1911a,b]).'" Just as Minkowski had done for electromag-
netic fields, von Laue could show that the familiar quantities describing e.g.
stress and energy of an extended body or a fluid could be regarded as compo-
nents of a second-rank tensor 7}, associated with the material system, while
including the relativistic equivalence between mass and energy in the Tgg

10 Again, for simplicity, I will often just speak of the ‘energy-momentum tensor’ or even
just of the ‘energy tensor’ of a material system, rather than of a mass-stress-energy-
momentum tensor density.

HSee also Norton [1992], especially p.28-33 for a summary of von Laue’s development
of a general energy-momentum tensor for stressed bodies and fluids.
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component of this tensor.'? I will call energy-momentum tensors obtained in
such a manner constructed energy tensors.

The following paragraph from one of Einstein’s unpublished manuscripts
(written in 1912) makes evident the importance Einstein attributed to these
results:?

The general validity of the conservation laws and of the law of
the inertia of energy [...] suggest that [the symmetric energy-
momentum tensor T of a given system and the equation f* =
0,T" where f” is the external 4-force acting on the system] are
to be ascribed a general significance, even though they were ob-
tained in a very special case [i.e. electrodynamics]. We owe this
generalisation, which is the most important new advance in the
theory of relativity, to the investigations of Minkowski, Abraham,
Planck, and Laue. [...] To every kind of material process we want
to study, we have to assign a symmetric tensor 7),,.

Thus we see that it was established soon after special relativity was for-
mulated that every kind of matter had an energy tensor associated with
it, encoding the new relativistic concepts of mass, energy, momentum and
stress. The difference between electromagnetic fields and ‘ordinarily mate-
rial” continua like fluids and extended bodies reduced to them having energy
tensors of different form: for electromagnetic fields, the sum of the diagonal
components (the trace) of T},, necessarily vanishes, for ordinary continua the
trace of T}, is necessarily non-zero. Hence, it now seemed justified to really
think of electromagnetic fields as a kind of matter.

When Einstein started to search for a relativistic theory of the gravita-
tional field, it seemed natural to expect the newly found energy tensor to
play the role of the ‘source’ of gravitational fields in much the same way as
the mass density p,, played this role in Newtonian gravitation theory, and

12T ange [2001, 2002] and Flores [2005] have recently revived the discussion of what the
‘equivalence’ between mass m and energy E of a material system really means, both of
them attacking the intuition that ‘equivalence’ should be understood as ‘identity’. But
both authors only investigate the question of what E = mc? means in the context of special
relativistic particle mechanics, rather than looking at the full mass-energy-momentum
tensors of more general material systems.

13See the Collected papers of Albert Einstein, Vol. 4, Document 1 (p. 63); my emphasis.
Cf. also Janssen and Mecklenburg, p. 41-50, who elaborate how the transition “from the
electromagnetic view of nature to relativistic continuum mechanics” was performed.
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as the electric charge density p. does in electrostatics. (In section 3, I will
argue that 7},, is not a source in quite the same way as p,, and p. after all.)

Even though it is natural to expect T},, to play the role of the gravitational
field source, it is not a priori so. Indeed, there once was a candidate for the
correct relativistic theory of gravitation which did not have the full energy
tensor on the right-hand side of the field equation, but only its trace T
Nordstrém’s theory of gravitation, developed between 1912 and 1914.

Hence in the context of searching for gravitational field equations, Ein-
stein and Grossmann in their 1914 Entwurf theory put constructed energy
tensors on the right-hand side of their candidate field equations, even after
having derived the vacuum field equations from a Lagrangian approach (Ein-
stein and Grossmann [1914], Einstein [1914])."® Hilbert, on the other hand,
assumed that the total Lagrangian depends not only on the metric field g,,
(corresponding, for both him and Einstein, to the gravitational potential),
but also on the electromagnetic potential A,. Thus he postulated that this
Lagrangian would ultimately describe both matter and gravitational fields.
Hilbert was licensed to do this because he followed Mie’s programme, which
hypothesised that all matter could eventually be reduced to electromagnetic
fields. Hilbert was criticised for this speculative assumption by Einstein
[1916] and Weyl [1917], who rederived the energy tensor in a way similar
to Hilbert, but without assuming that the fundamental matter fields were
only electromagnetic in nature. Thus, they allowed matter fields to be of
arbitrary rank and for them to possess symmetry properties different from
the antisymmetric electromagnetic field tensor F),,, and hence introduced the
modern concept of a general matter field ®.16

So whereas Einstein and Grossmann originally took their energy ten-
sors ‘off the shelf’, Hilbert derived the energy tensor of the electromagnetic
field from a Lagrangian that also gave the vacuum Einstein and the vacuum

14For a magnificent review article on Norstrém’s theory and the exchange between Ein-
stein and Nordstrom see Norton [1992].

15See especially p. 97-109 of Einstein and Grossmann [1914].

16Note that although Hilbert’s assumption of the electromagncetic nature of matter is
questionable as an assumption of principle, the restriction to the case where only electro-
magnetic fields are present in addition to gravitational ones became a field of intense study,
and Hilbert’s form of the field equations became known as the Einstein-Maxwell equations.
Furthermore, some of Einstein’s work on unified field theories in the 1920s can be read
as involving Einstein making assumptions very similar to Hilbert’s. Indeed, Hilbert saw
Einstein’s work on affine field theory as “a collosal detour via Levi-Civita, Weyl, Schouten,
Eddington [...]” back to Hilbert’s 1915 theory, cf. Sauer and Majer [2005].
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Maxwell equations. Hilbert saw this result as “the triumph of axiomatics”
(cf. Kichenassamy [1993], p. 196). The result seemed particularly remark-
able because Hilbert, being a follower of Mie’s programme, thought that
only the energy tensor of the electromagnetic field was fundamental, i.e. he
thought of von Laue’s energy tensors describing fluids and extended bodies
as merely effective, ultimately to be derived from the behaviour of electro-
magnetic fields.!”

Even though this hope was not fulfilled, it was subsequently found that
the energy tensors of all paradigmatic material systems formalisable in a
Lagrangian framework can be derived in a similar manner: which seems
remarkable enough. I will call energy tensors obtained (or even defined) in
such a way Hilbert energy tensors,'® and will review a modern version of the
derivation scheme in section 3.%°

2.2 Metaphysical matters

We started out by saying that we only think of something as material if we
feel resistance when trying to touch it, and if we know that it could push
other things given certain circumstances, i.e. if it has inertial mass and hence
the potential to possess energy and momentum. Then we have found that all
these concepts have been unified and generalised in relativity theory by the
introduction of mass-energy-momentum density tensors 7),,, encoding these
properties for particles, extended bodies, fluids, electromagnetic fields — ba-

17See Sauer [1999], especially p.555, and Brading and Ryckman [2008] for more details on
this aspect of Hilbert’s work, and Vizgin [1994] for a general summary of Mie’s programme.

18This terminology pops up in certain texts when referring to the energy tensors derived
with the help of Lagrangians, but it is not a universally used terminology.

9 A more detailed account of energy-momentum tensors would now go on to describe
the Noether theorems and currents, giving rise to the definition of so-called canonical
energy tensors in special relativity. It would report in detail the discussion of whether
canonical energy tensors and Hilbert energy tensors are after all equivalent, even though
canonical energy tensors (in contrast to Hilbert tensors) are not necessarily symmetric but
have to be symmetrized by a procedure first found by Belinfante and Rosenfeld [1940].
Very recently, Leclerc proposed a proof to show that canonical energy tensors and Hilbert
tensors are indeed equivalent if matter fields do not couple to the derivatives of the metric
field, while Saravi [2002] explicitly showed the equivalence between the canonical and the
Hilbert energy tensor for the free electromagnetic field. Another important topic on the
purely mathematical side are Petrov’s and Serge’s classification of second rank tensors,
classifying both the Ricci and energy tensors in a rigourously algebraic manner; see Hall
[2004].
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sically everything we could think of as material. It seems that intuitively
we only think of something as matter if there is mass, energy and/or mo-
mentum associated with it, and if we find these properties associated with
something which we did not think of as matter beforehand, we will now do
so (remember how we changed our opinion about the electromagnetic field).
In other words: it seems we regard possession of mass-energy-momentum as
an essential, rather than as an accidental, property of material systems.

The distinction can be introduced in the following way: An essential
property of an object is a property that it must have, if it exists, while an
accidental property of an object is one that it happens to have but that it
could lack, even if it exists.?°

Note that an essential property does not need to be a fundamental prop-
erty, i.e. a property that cannot be defined in terms of other properties. In-
deed, we will now see that despite the above, mass-energy-momentum density
is not a fundamental property in relativistic field theory.

2.3 Energy tensors, matter fields and the metric Field

The fundamental properties of a relativistic field theory, properties that are
not defined in terms of other properties, are represented by tensor fields like
FE,., ¢ and g,,. We often speak of F},, as ‘an electromagnetic field’, of ¢ as ‘a
scalar field’ and of g, as ‘a metric field’. Strictly speaking, this kind of talk
is slightly misleading, for F), does not represent the electromagnetic field
‘as such’, but a certain property (or set of properties) of the physical elec-
tromagnetic field: its amplitude, or electromagnetic field strength. However,
electromagnetic field strength is the defining property of a physical electro-
magnetic field; something is an electromagnetic field if and only if it can be
associated with a tensor field F),,. Still, we should see F},, as describing fun-
damental properties of a material system, namely one that contains (possibly
only) an electromagnetic field. But I will follow common custom and speak of
F,, as ‘a matter field’, intending this name to be an abbreviation for saying
that it describes fundamental properties of a material system. Note that the
fundamental properties of a material system do not need to be describable
by only one tensor field. The fundamental properties of a perfect fluid for

20See Robertson [2008]. Fine has criticised the definition of essentiality in terms of
possible worlds in Fine [1994] and in Fine [1995], especially in the latter arguing that
there are senses of essentiality that are not captured by this definition. I will will not
enter this discussion here.
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example are described by a triple of matter fields, (p,v*, p), where p is the
proper density of the particles the fluid consists of, v, the velocity field de-
scribing the movement of every particle, and p the pressure field, giving the
momentum an arbitrary fluid volume element ‘feels’ due to the movement of
the rest of the fluid.

I have argued above that what makes us think of systems being described
by Fj, or (p,v*,p) as material systems is that they possess mass-energy-
momentum (density). But whereas ‘mass’ was described as a fundamen-
tal property in Newtonian physics, this is not the case for mass-energy-
momentum density in relativistic field theory: every T}, is defined in terms
of the fundamental matter fields associated with the material system. But
this is not enough: energy tensors also depend on the metric field g, !

For example, the energy tensor of a an electromagnetic field is

1 1
T,uzx = E(FMAF)\V + Zg,LLI/F /\Fcr)\) ’ <3>

while the energy tensor for a perfect fluid is given by

T = (p+ P)VuVy = PGy - (4)

Note that it is not possible in either case to ‘absorb’ g,,, by raising or lowering
indices of the other tensors involved. But even if it was, the metric tensor
would still be there implicitly, not because we could always ‘pull it out again’,
but because we can only have two tensors of the ‘same name’ (i.e. F,* and
F,, rather than Fl,)‘ and H,,) with differing numbers of upper and lower
indices if we have a unique isomorphism between the tangent space of the
manifold and its dual. And we only have such an isomorphism if we have a
metric tensor field g, defined on the manifold.?!

Although the latter point seems of a rather formal nature, the main point
is not: mass-energy-momentum tensors do not just depend on the matter
fields but also on the metric field. What does this mean?

As so often in field theory, the Lagrangian framework is a particularly
convenient tool to search for an answer to this question. So I will now show
how energy tensors can be derived in such a framework. It will become clear
that in order for a material system to possess mass-energy-momentum, we
need a certain relation between a matter field and the metric field: they need

21See Wald [1984], p. 22-25.
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to couple in a certain way.??

22Two things should be noted.

i) Not every system can be given (or at least: has been given so far) a Lagrangian
formulation. This is particularly true for complex fluid systems. Hawking and Ellis [1973],
p-69-71, give a Lagrangian description of an an isentropic perfect fluid, while DeFelice and
Clarke [1990], p.195-198, even give one for a general perfect fluid. But more complex fluid
systems, like the ones involving viscosity and heat transfer, have not to my knowledge
been given a Lagrangian formulation, although their energy tensors too depend on the
metric tensor. Fither way, note that the Lagrangian framework is a means to discover the
way energy tensors depend on the metric, just as it is a means to derive the equations of
motion of a given system; neither the existence of equations of motion nor the dependence
of an energy tensor on the metric depends on a Lagrangian derivation.

ii) On the other hand, there are particularly simple material systems which do not
explicitly depend on a metric tensor. I know of two, ‘normal dust’ and ‘null dust’. The
former represents a collection of particles which do not collide with each other (and is hence
identical with a pressureless perfect fluid), the latter represents a collection of not directly
interacting light rays. The energy tensor of both systems has the form (cf. equation (4))

™ = pvHo” . (5)

In the case of ‘normal dust’, the velocity vectors have to be time-like, in the case of ‘null
dust’ they have to be light-like. Although these energy tensors do not depend on the
metric tensor explicitly, their definition nevertheless demands some spacetime structure
to be in place. In the case of normal dust, one could even argue that we need full-blown
metrical structure anyhow, because an essential part of the model is that the velocity
vectors are normalised, v,v* = —1, and in order to normalise vectors we need a metric.
(One may loosen the demands of the model so that only affine structure is needed, but
no further loosening seems possible.) In the case of null dust, we do not seem to need
metric or affine structure in order to obtain an adequate energy tensor for the system, but
we do need conformal structure, for otherwise there would be no way of saying whether a
vector is time-like, space-like or light-like. In GR, both affine and conformal structure are
implied by metric structure, and even without GR they can always be extended to metric
structure. In fact, it is not too surprising that we do not need full-blown metrical structure
even for the simplest material systems — after all, even some gravitational phenomena
can be described without recurrence to the metric. (I thank Robert Geroch, Erik Curiel,
Stephen Lyle and John Norton for helpful and patient discussions of the issues summarised
in this footnote.)
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3 Deriving energy tensors

3.1 The basic ideas of Lagrangian field theory

The basic idea of Lagrangian field theory is to derive the equations of motion
(also called the field equations) of a field ¥ by using the calculus of variations.
One starts by assigning to the fields a Lagrangian density £, or Lagrangian
for short, with the help of which the action S can be defined:?

S:/X(W,GM\I!,GVOH\D,...)dQ (6)
Q

() is a compact region in spacetime, df2 a 4-dimensional volume element. The
field ¥ can be a tensor field of arbitrary rank (and potentially symmetric,
anti-symmetric or asymmetric). The dots in the Lagrangian signify that in
principle it could depend on derivatives of the fields of arbitrary order.

In general relativistic systems, there are two kinds of fields: the matter
fields ® and the metric/gravitational field g,,. We will see that the matter
fields can only represent material systems if there is a metric field as well —
that it is only because of their relation to the metric field that they have a
mass-energy-momentum tensor 7}, associated with them.

It is almost always enough to allow the Lagrangian to depend only on
the first derivatives of the matter fields ® in order to derive their equations
of motion — and because in GR the matter fields live in a curved spacetime
and because we would prefer their equations of motion to be manifestly gen-
erally covariant, we will assume the Lagrangian to depend on the covariant
derivatives V,® of the matter fields rather than on their partial derivatives
0,92

This is not possible for the metric, however. In GR (in contrast to other
gravitation theories) the metric g,, and the covariant derivative V, are not
independent of each other, but the Christoffel symbol I, which gives the
difference between a covariant derivative and a partial derivative, is defined
in terms of first order partial derivatives of the metric. Indeed, this is a
consequence of a postulate of GR (the postulate of ‘compatibility of metric

23Some authors reserve ‘Lagrangian’ for the integral of the Lagrangian density over a
spatial hypersurface. Note that strictly speaking . in equation (6) also depends on the
coordinates x*, but it is common to omit writing out this dependence explicitly.

24Gee Hobson et al. [2006], p. 531, for details on this, and note that we have to treat
®“ and V,¥* as independent variables.
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and connection’), namely that V,g,, = 0, which ensures that the geodesics of
a curved spacetime (given by the connection F”W) coincide with the geodesics
of a local Lorentz geometry (given by the metric g,,). So in the case of the
metric field, we need the Lagrangian to depend on its partial derivatives —
and indeed, in order to derive the Einstein field equations, we need it to
depend on the first and second order derivatives of the metric. Hence, the
action for a general relativistic system with one matter field ® and the metric
field g, s

5= /ﬂ LDV, G O Grs DD G )AL (7)

In any case, the idea is that the Lagrangian is a scalar functional (up to a total
divergence) of the dynamical fields present in the system under consideration,
and that if one knows the Lagrangian, one can deduce the equations of motion
for the fields in question. In order to do so, we define a wvariation of a
matter field ® by & — ® + §®. (The variation for the metric field g, is
defined similarly below.) 6® is also called the ‘virtual displacement’ of @,
the idea being that the virtual displacement d® of a field configuration ®
gives us kinematically possible configurations infinitely close to ®. (That
these configurations are only kinematically possible also explains why they
are called virtual: ® + §® will normally not be a solution to the dynamical
equations of motion we aim to find for the field ®.) A variation in ® then
‘induces’ a variation in .Z, and eventually in S (note that variation § and
integration [ commute).?® The first-order variation in S induced by the
variation in @ is then

25See Hobson et al. [2006], p.531, for this form of the Lagrangian and its justification.
There are many textbooks on Lagrangian field theory; a good place to start is indeed Hob-
son et al. [2006], who deliver a very concise treatment in the context of GR. Furthermore,
classics like Landau and Lifschitz [1989], Hawking and Ellis [1973], and Wald [1984] give
excellent treatments of the role variational methods play in GR, whereas Lanczos [1986]
delivers a wonderful systematic-historic discussion of variational principles in general. Fur-
thermore, Poisson [2004] gives a detailed presentation of the boundary terms which have
been found necessary in order to make the variational problem for the case of the Hilbert
Lagrangian (17) well-defined.

26 A more abstract way of defining the notion of a variation is found by considering a
smooth one-parameter family of fields ®, which start from ®; and satisfy appropriate
boundary conditions. A variation is then defined by the equation W := d:ili\* [x=0. For this
way of defining variations see e.g. Wald [1984], p.450, and Hawking and Ellis [1973], p.65.
For the definition of the variation used in the main text see for example Hobson et al.
[2006], p.87 and 529. For the commutation relation between variation and integration
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55:L<%§w+5%%5am@049. (8)

We now impose Hamilton’s principle, namely that the variation 6.5 of the
action be stationary under variations of the fields d®. More precisely, we
demand that 6S = 0 for every variation d® inducing it, if the variation
vanishes on the boundary 0 of the volume element €. It can be shown that
a necessary and sufficient condition for the action to be stationary is the
fulfilment of the so-called Euler-Lagrange equations of the system, which are

equivalent to the equations of motion of the fields given a suitable Lagrangian
£

0 9

o(V,)

0L 0L N( 0.L ):o o)

& . . . . . . .
where % is called the wvariational derivative, or Euler-Lagrange derivative,

of £ with respect to .

see Hobson et al. [2006], p.88, while commutation between variation and partial/covariant
derivatives is proven on p.529 and p.531. Note also that Kichenassamy [1993] distinguishes
three different kinds of variation, which he terms functional variation, label variation and
Lie variation, of which he suggests that for example Hilbert [1915] and Einstein [1916] did
not clearly distinguish between them. Label variation and Lie variation become essential
in proving conservation laws; in this text, we will only need what Kichenassamy calls the
functional variation.

2"For a proof that the fulfilment of the Euler-Lagrange equations is a necessary and
sufficient condition for the action to be stationary see for example Hawking and Ellis
[1973], p. 65; and cf. Doughty [1990], who on p. 178 points out that this is only the
case if the Euler-Lagrange equations are consistent. Note that it is not immediately
clear why the Euler-Lagragnge equations should coincide with the equations of motion
of a given material system. There is a way to make sense of it in the context of point-
particle mechanics, where the Lagrange function L has a more immediate significance
as the difference between kinetic and potential energy of a particle, which allows one to
separate the Euler-Lagrange equations into a kinetic term and a potential term. Putting
the former to the left-hand side and the latter to the right-hand side then coincides with
Newton’s second law in a natural way; cf. Lanczos [1986], p.118-119, and Feynman [1963],
Volume II, Chapter 19 for more details on this. I am not aware of a similar ‘naturalness-
argument’ in the case of field theories, where a Lagrange density .Z does not have a
corresponding interpretation but becomes a more abstract mathematical object. Still,
we know that as a matter of fact, the Euler-Lagrange equations for a field coincide with
the equations of motions of the field, just like in particle mechanics; and one sensible
viewpoint is surely to not see this as a miracle at all but as a result of our freedom to
choose Lagrangians. However, compare footnote 30.
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The Euler-Lagrange equations for the metric field can be obtained in a
very similar manner. The only difference is that the Lagrangian depends
on first and second order (partial) derivatives of the metric, while it depends
only on first order (covariant) derivatives of the matter fields. Hence, in order
to get the Euler-Lagrange equations for the metric field, we need to demand
that i) 65 = 0 for all variations g,,, — g, + 0g,; ii) the variation of g, and
the first derivatives of the metric, 0,¢,,, vanish on the boundary 92 of the
spacetime region 2. We then get the following Euler-Lagrange equations:

0.7 0L ( 0L ) < 0L >
=0 | == ) +0,0, | ==———— | =0 , 10
OGyuw OGyuw (05 Gyuw) g 9(0p0s Gpur) (10)
where again % is called the variational derivative of £ with respect to g,

We see that for every field to be varied we get a separate set of Euler-Lagrange
equations.

3.2 Equations of motion / field equations

Before we look at how we get the energy tensor 7),, of a material system out
of this procedure, let us look at particular field equations obtained by the
above schema. If the only matter field present in the system is a free scalar
field ¢, then we find that the Lagrangian

Ly = @ngmvy(b (11)

(with ¢ := det(g,,)) gives us the following field equations when we set £ =
Zs and ® = ¢ in equation (9):

ViV, =0 . (12)

If, on the other hand, the only matter field present is a free electromagnetic
field F},, defined in terms of a vector potential A, by F),, =V, A, -V A, =
0,A, —0,A, , we find that taking

Lem = 8—;ggmngaﬁFw , (13)

gives us the source-free Maxwell equations
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V" =0 (14)

when put into equation (9) and varying . with respect to A,. The Maxwell-
equations with a 4-current density j, as a source can be derived similarly.?®

While the Maxwell equations describe the dynamics of the free electro-
magnetic field F,,, the vacuum Einstein equations

1
G = R — §gWR =0 (16)

describe the dynamics of the free metric field g,,,. We obtain them by putting
the so-called Hilbert-Lagrangian into equation (10), varying -4 with respect

to the metric g,,:%

D%G - \/__gR ) (17>

where R is the Ricci curvature scalar. Remember that the latter is the twice
contracted Riemann curvature tensor, and hence defined purely in terms of
the metric tensor and its first two derivatives.?°

28Note that only this half of the free Maxwell equations (corresponding to the three-
vector equations V-E=0and Vx B — %—If = 0) is a dynamical equation, the second

half
VUF,LLV + V}LFL/O‘ + VUFJ,LL =0 (15)

follows from the definition of F),, in terms of the vector potential, and corresponds to the
three-vector equations V-B=0and V x E + %—Jf =0.

29Note that if we vary the metric field 9uv, the volume element () that occurs in equation
(7) is affected by the variation due to its dependence on the metric. Wald [1984], p.452-3,
describes how to handle this. The main practical consequence is that the term /—g =
\/ —det(g,,) needs to occur in every Lagrangian dependent on g,,,, so that £ becomes a
scalar density and thereby does not depend on the volume element.

30" Arguably, the whole procedure of obtaining equations of motion in this way looks a
bit like black magic and trickery — it seems we freely choose the Lagrangians in such a
way that they give us the equations of motions we already know. But actually, due to
symmetry principles there is much less arbitrariness involved than appears at first sight:
Lovelock [1969] proved that in 4 dimensions any Lagrangian that i) gives rise rise to field
equations of second order in the metric; and ii) is invariant under arbitrary coordinate
transformations must be equivalent to the Hilbert Lagrangian (plus an extra term if the
cosmological constant is non-zero). Lovelock [1974] proves a similar result for the Maxwell
equations, while Grigore [1992] generalises Lovelock’s original result to arbitrary dimen-
sions of spacetime. However, it does not seem possible to find such uniqueness results
for any system of fields: there are examples where different Lagrangians give the same
equation of motion; cf. Trautmann [1962].
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3.3 Enter the energy tensor

In the above, I have followed common custom and spoken of equations (11),
(13) and (17) as the field equations of ‘free’ scalar, electromagnetic and metric
fields, respectively. Indeed, the Lagrangian for the metric field depends only
on the metric field and its derivatives. But the Lagrangians for the matter
fields ¢ and F),, depend not only on these fields and their derivatives but
also on the metric field g, !

Somewhat surprisingly, it is only via the dependence of matter Lagrangians
on the metric field g,, that we can derive what makes us think of them as
matter fields: an assoicated mass-energy-momentum tensor 7). For exam-
ple, the variational derivative of the electromagnetic Lagrangian with respect
to the metric field, 5‘;5; iff , gives us a generalised version of Minkowski’s energy
tensor of the electromagnetic field:3!

1 A 1 oA
TMV = E<FM FAV_"ZQWF Fg)\) . (18)
So it is not just the gravitational Lagrangian % which depends on the
metric field g,,, but also the electromagnetic Lagrangian £z, giving us a

total Lagrangian of the form

a%otal = gG(gw/a guu,aa g;w,aw) + gEM (g/w? F,ul/) . (19)

Indeed, it is this Lagrangian that gives us the full gravitational field equations
if we put (19) into the Euler-Lagrange equations for the metric field g, (10).
They then give us:

6L\ ([ 5Lem
(Guz/ - W) - <_ (5gl“’ — Tp,z/) . (20)

These equations are, up to the coupling constant, equivalent to the Einstein
field equations (1) with electromagnetic fields being the only kind of matter
present.>?

31Tt is a generalised version because Minkowski formulated his energy tensor for special
relativistic systems, whereas this energy tensor, allowing for a dynamical metric, holds in
general relativity as well.

32Gee Wald [1984], p.455-6, about how the coupling constant can be included into the
definition of 7},, presented below; many other authors keep the constant independent of
the definition of T},,.
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The first thing to note is that a similar procedure is available for every
matter field ®: given a Lagrangian that gives us the equations of motion for
®, the same Lagrangian will give us the energy tensor of the field ®, when
the variational derivative with respect to the metric field g, is taken. This
procedure turns out to be so successful in recovering energy tensors previously
constructed by phenomenological means that in mathematical physics

T, 2 09, 9,V,P)
V=g og™

is used as the definition of the energy tensor of a newly introduced matter
field ®.33

Note that it follows from equation (21) that the energy tensor of a material
system vanishes if and only if the corresponding matter field ® vanishes. For
the latter tells us that 7}, can only vanish in a certain region if ® vanishes in
the same region (for g,, never vanishes), and it tells us that if 7}, vanishes
then ® must vanish also. As a consequence, every non-vanishing matter field
® brings with it a non-vanishing energy tensor T}, and vice versa.>* Hence,
the presence of a non-vanishing energy tensor 7),, at a point is a necessary
and sufficient condition for this point to be occupied by matter.3

So the variational derivative of the Lagrangian of a matter field ® with
respect to the metric field g, is the energy tensor of the field ®. We thus
see that the presence of the metric in matter Lagrangians is truly essential:
without metric dependence of the Lagrangian, gg‘%ﬁ would be trivially zero.

Equation (20) and (21) also show us why the energy tensor 7, is not a
‘source’ of the metric field in the same way as the mass density p,, is a source

(21)

33Misner et al. [1973] (and many other books) define the energy tensor in this manner,
Wald [1984] (and equally many books) define T),, as the variational derivative of the
action S, rather than the Lagrangian ., with respect to the metric g,,. But given that
integration and variation commute, the two definitions are equivalent.

34Cf. Hawking and Ellis [1973], p.61.

35‘Non-vanishing’ means that some of the components of the energy tensor are non-zero
in a given coordinate system at a point. And if some of the components of a tensor are
non-zero in one coordinate system, then this implies that there are non-zero components
in every coordinate system.

36Brown and Brading [2002] put forward a complementary argument, suggesting that
general covariance (and the role it plays in conservation laws as obtained from Noether’s
theorems) rules out the possibility of having a Lagrangian that only depends on the matter
fields but not on the metric field. See in particular page 3 and section V of the above cited
paper.
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of the gravitational field in Newtonian theory, or as the electric charge density
pe is a source in electrostatics. In both cases, one can specify the source first
and then obtain the gravitational or the electric field, respectively, via the
field equations. This is not possible for the energy tensor T),,, which already
depends on the field g,,, for which it is supposed to act as a source.?”

But why don’t we interpret the Einstein tensor G, = % as the energy
tensor of the metric/gravitational field? Indeed, such a proposal was made
soon after the birth of GR. Lorentz [1916] argued that rather than following
Einstein, who introduced a pseudo-tensor as the representative of the energy-
momentum of the gravitational field, we should regard the Einstein tensor
G, as representing the energy tensor of the gravitational field. The Einstein
equations (1) would then primarily describe an interchange of mass-energy-
momentum between the gravitational field on the one hand and the matter
fields on the other hand. But even if one agrees with Lorentz that an energy-
tensor for the metric field is very desirable, his way of looking at things is
arguably unattractive due to the different nature of the conservation laws
for T, on the one hand and for G, on the other. In short, V*G,, = 0 is
an algebraic identity, whereas V#T),, = 0 is a weak conservation law, in the
sense that it holding depends on the field equations holding. But I will not
develop this argument here.3

For the topic at hand the crucial lesson is that it is only via the dependence
of the matter Lagrangian on both the matter field ® and the metric field g,
that we can define an energy tensor for the material system represented by
@_39

I will now show in more detail that the energy tensor 7}, of matter is
definable because of the way the matter fields and the metric field relate to
each other.

3TWald [1984], p. 73, makes the same point. It should be noted that the blurring of
the distinction within GR between a field and its source is a point quite separate from
the non-linearity of the field equations; which is the failure of a superposition principle
holding for the solutions of the field equations, and a feature the Einstein equation possess
even in the vacuum case.

38See Trautmann [1962] for details.

39The energy tensor T, would be definable if the total matter Lagrangian .Zs could be
decomposed into two terms: Ly = L, (95 2) + Lo, (P), where @ and = are supposed
to be matter fields. But it would then be the energy tensor of only the field =, and hence
® would not be a matter field after all.
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3.4 Mixed Lagrangians

Imagine that there are only two non-gravitational fields in the world, say a
scalar field ¢ and an electromagnetic field F},,, with Lagrangians

g¢:_\’_5’

59"V V.0 (22)
and
Ly = 8—;99a7956Fa,@Fw5 (23)

respectively. Then there is a clear distinction between the case where the
two fields are interacting directly and the case where they are not interacting
directly. What is more, both cases are physically possible! For the total
Lagrangian of the physical system could either be

N =Ly + Lpu (24)

or

where %, describes the direct interaction between the two fields. For ex-
ample, it could be

o%nt = \/__gWQQSF;WFlW (26)
where w is the coupling constant. In this case, ¢ and F),, directly and mini-
mally couple to each other.

Two fields are said to directly couple if they are multiplied with each other
in the Lagrangian, giving coupled differential equations as field equations via
the Euler-Lagrange equations. They are said to indirectly couple if they do
not couple directly but via an intermediate field: if field ¢ directly couples
to field g,, and field g, directly couples to field F},,, then field ¢ indirectly
couples to field F),,,. Another example is equation (24): the scalar field ¢ and

the electromagnetic field F),, indirectly couple to each other via the metric
field g,,,.*°

40Yet another example of indirect coupling is Brans-Dicke theory in the Jordan frame
(cf. Weinstein [1996]): the newly introduced scalar field ¢ indirectly couples to all matter
fields via directly coupling to the metric g, ; which in turn directly couples to all matter
fields.
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A field ¢ is said to minimally couple to a field F),, if it couples only to
F,, itself, rather than to a tensor formed of its derivatives.*!

Now imagine a world in which we only have an electromagnetic field F),,
and a metric field g,,. In this case, it is not possible to write the Lagrangian
in the form

Zot = XG + gEM + a%nt ) (27)

where only .%,; would contain both fields. For as we have seen in the last
subsection, £z does already contain the metric field g,,, and in order for
the electromagnetic field to have mass-energy-momentum, %y, must indeed
depend on g,,. And so Zgy exactly fulfils our definition of what it means
for one field to directly and minimally couple to another field: g, and F},, so
couple in Zgy,. Hence, what would normally be the interaction term between
metric and electromagnetic field, Zn(guw, Flw), is already and necessarily
part of the ‘free’ electromagnetic Lagrangian Zf,,. Thus, the way the metric
field and the electromagnetic field are related to each other results in the
electromagnetic field having an energy tensor! A similar argument can be
made for every matter field that is described in the Lagrangian framework.*?

The above should not be misunderstood as saying that energy tensors
result from an interaction between the matter fields ® and the metric field
guv- For an interaction demands that all fields present are dynamical fields,
and so such a statement would cause trouble with the fact that we can define
energy tensors in special relativity (with its non-dynamical metric) equally
well as in general relativity (with its dynamical metric). And even in special
relativity can we obtain the energy tensor as the variational derivative of

the matter Lagrangian, T, = —=°Z222u); for the definition of the

41This definition of minimal coupling is a generalisation of the principle of minimal
coupling proposed by Goenner [1984], which is about minimal coupling to the metric
field in particular. (He argues that the common definition of minimal coupling, namely
that general relativistic field equations can be obtained from special relativistic ones by
demanding that 1,, — g, and 0, — V,, where 7, is the Minkowski metric, is unique
only for first-order differential equations.) In the case of a matter field F),,, coupling to the
metric field g, the relevant tensor to which F},, would have to couple for there to be non-
minimal coupling is the Riemann tensor R, . Interestingly, this definition of minimal
coupling also means that if we regarded the electromagnetic vector potential A, rather
than the Faraday tensor F},,, as representing the electromagnetic field on a fundamental
level, equation (26) would have to be seen as expressing non-minimal coupling between
the scalar field ¢ and the electromagnetic field A,,.

42The direct coupling to the metric also occurs in both %, and .% above.
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variation §.Z as a result of a ‘virtual displacement’ of g,, (see the beginning
of this section) does not depend on the metric field being dynamical or non-
dynamical.*® Of course, we are not allowed to apply Hamilton’s principle to
the metric field of special relativity, for otherwise it would be a dynamical
field. This is a fortunate prohibition, for if we were allowed to demand
0S5 = 0 for all 6g,, in special relativity, it would give us 7, = 0 as a
consequence, precisely because there is no purely metric Lagrangian in SR.
And of course we know that we can (and normally do) have non-vanishing
energy tensors even in special relativistic systems. So even though the matter
fields ® and the metric field g,, are interacting in GR, they do not need
to be interacting in order for there to be a non-vanishing energy tensor.
What we do need in order to have a non-vanishing energy tensor for every
matter field a weaker requirement: coupling of every matter field to the
metric field in the matter Lagrangian. Indeed, it seems sensible to make a
distinction between speaking of two fields interacting and two fields coupling.
For a dynamical field can couple to a non-dynamical field in the way defined
above, but we would not speak of an interaction if only one of the two fields
was dynamical: a non-dynamical field acts without being acted upon if it
couples to a dynamical field. Hence, two fields interacting should be seen
as sufficient but not necessary for the fields to couple, whereas two fields
coupling is necessary but not sufficient for two fields to interact.**

43See Landau and Lifschitz [1989], p. 293, for a similar statement.

4]n the ‘constructive’ approach towards special relativity, it has been argued that the
metric should not be seen as an entity in its own right, but as merely encoding certain
properties of the matter fields; see Brown [2005] and Brown and Pooley [2004] for an
advocacy and Norton [2007] and Janssen [2007] for a criticism of this position. One
reason for advocating the position is that it is seen as an unsatisfactory aspect of special
relativity that the metric seems to violate the action-reaction principle by acting without
being acted upon; a feature we get rid of if the metric is conceived as encoding properties
of the fully interacting matter fields. What I say above does not help to decide for or
against a constructive approach, although constructivists and anti-constructivists will see
it in very different lights. The constructivist will see the dependence of energy tensors on
the metric tensor as yet another example of the fundamental difference between special and
general relativity: he will say that in SR we have energy tensors depending on something
that can be reduced to the properties of the matter fields and that hence does not have a
relational character, whereas with respect to GR he will say that the energy tensor of a
given matter field depends on its relation to a new dynamical field, the metric field. The
anti-constructivist, on the other hand, will stick with his more unified picture and say that
in both GR and SR energy tensors depend on the structure of spacetime, be it dynamical
or not.
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To sum up, the matter fields ® stand in a certain relation to the metric
field g,., they couple directly to g,.,, a relation necessary for there to be
mass-energy-momentum 7,,,.

4 What kind of property is mass-energy-momentum
density?

In section 1, I pointed out that the only thing that would really speak to
either matter or geometry being more fundamental would be if one was a
requirement for the existence of the other but not vice versa.*> Both the
(geo)metric field g, and the matter fields ® are fundamental fields according
to GR: neither requires other fields, and in particular not the respective other,
in order to exist / to be defined. But the tensor field that is supposed to
represent the main properties of matter, the mass-energy-momentum density
tensor 7, is a non-fundamental field, and it does require both g,, and ® by
being defined in terms of them.

So can we really say that 7T}, is an intrinsic property of material systems,
as was the mass density p in Newtonian mechanics? Should it not be a
necessary condition for 7}, to depend only on the matter fields ®, rather
than on both ® and g,,, in order for it to be an intrinsic property of matter?

4.1 A relational property?

Lewis [1983], p.111-2, introduces the distinction between intrinsic and ex-
trinsic properties in the following way:

A sentence or statement or proposition that ascribes intrinsic
properties to something is entirely about that thing; whereas
an ascription of extrinsic properties to something is not entirely
about that thing, though it may well be about some larger whole
which includes that thing as part. A thing has its intrinsic prop-
erties in virtue of the way that thing itself, and nothing else, is.

45Note that A requiring B while B not requiring A is sufficient, but not necessary, for
B to be more fundamental than A. For if A did not require B but C, while B required
neither A nor C, then B would also be more fundamental than A. And if A, B,C are
fields, then according to the terminology introduced in the preceding paragraph, B would
be a fundamental field and A a non-fundamental field.
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Not so for extrinsic properties, though a thing may well have
these in virtue of the way some larger whole is. The intrinsic
properties of something depend only on that thing; whereas the
extrinsic properties of something may depend, wholly or partly,
on something else.

We have seen in section 3 that every energy tensor 7}, depends on both the
matter fields ® and the metric field g,,, and that it is only via the coupling
between metric field and matter fields that we can define a mass-energy-
momentum tensor 7}, for a given material system.

It seems to follow that the energy tensor T}, must be seen as correspond-
ing to an extrinsic property of material systems. For matter only has an
energy tensor 7}, associated with it in virtue of the relation between the
matter fields ® and the metric field g, .

We should now distinguish between relations and relational properties, in
order to find out what kind of extrinsic property ezactly we should see T),,
to be, and to see what it is a property of.

An n-place relation G(z1,...,a,) depends on n entries. An example of a
2-place relation is ‘Rxy := (x is the father of y)’. A relation gives rise to a set
of relational properties. For example, the fact that Hermann Einstein and
Albert Einstein stand in a certain relation to each other (namely a father-son
relation) gives rise to the relational property of Hermann that he is a father,
and to Albert’s relational property of being a son.

We can make this distinction more precise in the following way: let us
call an n-place predicate, where n > 2, a relation if and only if the predicate
contains only variables x,y, z, but no designators a,b,c. Let us speak of
a relational property if we have an n-place predicate that contains either a
mixture of variables and designators or only designators.

Then we can think of Hermann and Albert Einstein in the following way.
We can think of them as two individuals (or two systems each of which con-
sists of only one individual) who stand in certain relations to each other and
have hence various relational properties. For example, if we denote the (an-
tisymmetric) relation ‘x is a son of y’ as Szy, Albert as a and Hermann as
h, then the fact that Albert possesses the relational property of ‘being the
son of someone’ can be expressed by the sentence JySay, while the fact that
Albert possesses the relational property of ‘being the son of Hermann Ein-
stein’ can be expressed by the sentence Sah. Both properties are properties
of Albert only, even though they are due to his standing in a certain relation
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to Hermann.*6

Rather than looking at the system consisting only of Albert Einstein and
wondering about the relational properties he has in virtue of standing in a
certain relation to his father, we could also look at the bigger system (Albert,
Hermann) = (a,h) := s and wonder about the property the system s has
in virtue of the relations its parts stand in. One intrinsic property s has
(a property that only depends on s itself, but not on the relation s has to
anything else) is that its elements stand in a father-son relationship. Let us
denote this 1—place property of systems by Fx, and the fact that s possesses
this intrinsic property as being expressed by the sentence F's.

But not much seems to depend on whether we choose the first or the
second perspective. In both cases we can say everything we want to say
about Hermann and Albert Einstein in this context, and in both cases the
important fact is that the relation between the two leads to certain properties.
Still, it is an interesting question whether the energy tensor 7}, is more like
Albert’s relational property of being Hermann’s son, Sah (case 1), or whether
it is more alike the property of the system (Albert, Hermann), that its parts
stand in a father-son relationship, F's (case 2).

In the second case, we regard the predicate Z;(x), where the domain of
x is ‘systems in which both a metric field g,, and at least one matter field
® is defined’, as expressing the intrinsic property of such systems to have
an energy tensor associated with them, a property they have because of the
relation that holds between their two kinds of parts. The system s := (g,,,, )
possesses the intrinsic property 71 s := 1), (g, ®) in virtue of the metric field
g, and the matter fields ® standing in a certain relation .7 ().

In the first case, we would say that mass-energy-momentum density 7},
is a property of only the material parts of the total system, represented by
the matter fields @, a property that the material system has in virtue of its
relation to the metric field g,,,. We would then say that although 7}, depends
on the relation the matter field ® has to the metric field g, (like Albert’s
property of being the son of Hermann depends on his relation to Hermann),
the property ‘possessing mass-energy-momentum’ is still a property only of
matter, just as it is a (relational) property of only Albert that he is the son
of Hermann. We can reformulate this by calling % (z,y), where the domain

46T have in this paragraph made a distinction between a sentence Sah and the property
of a it describes. For ease of reading, I will not make this distinction explicit from now on
and just call Sah itself a property of a.
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of x is ‘metric fields’ and the domain of y is ‘matter fields’, the relation
which allows us to express the fact that a material system represented by
® has the relational property of having an energy tensor associated with it
as 79, ® = 1,,(g,w, ). The trouble with this is only that nothing in the
representation 7g,, P gives away that .7 is a property of the part of the
total system represented by ® only — but that is also the case for using Sah
in order to represent system Albert’s property of being system Hermann’s
son.

As in the case of Hermann and Albert, I do not think that much depends
on the perspective we choose. Indeed, one could arguably represent both
1 and 5 as a map from the set of pairs (g,,,P) to the set of all energy-
momentum tensors, 7 : (Gu, ®) — Ty (g, ®).*" The distinction would
merely lie in seeing the set (g, ®) as an ‘object’ or as a pair of objects.
Either way, we find that material systems possessing (non-vanishing) mass-
energy-momentum tensors depends on a relation between the matter fields
and the metric field.®

4.2 Relational and essential?

In section 2.2 I have argued that we treat possession of mass-energy-momentum
as an essential property of material systems. Now we have seen in the previ-
ous section that it is also a relational property, a property material systems
only have in virtue of their relation to spacetime structure.

It might be claimed that every essential property must be an intrinsic
property. Indeed, the claim can be argued to follow from Lewis’ principles
of recombination and plenitude for the creation of possible worlds, if recom-

4T0Of course, this is only the simplest case: if a system contains m matter fields, then .7
is an m + l-relation: 7 : (guu, @1, .., Pm) — Ty (G @1, - .., Oin).

“8Note that there is still the age-old question of whether the metric/gravitational field
could possess energy-momentum in its own right, and in the same way as the matter fields.
Given what I said above, the success of such a project would call into question the very
distinction between ‘matter fields’ like ® on the one hand and ‘geometric fields’ like g,,, on
the other hand, and hence be an important step towards a unified field theory. But alas,
at least within GR, we only have the choice between associating a coordinate-dependent
pseudo-tensor with the energy of the gravitational field, or to restrict our attention to
asymptotically flat spacetimes. For a historic discussion of the debate between Einstein,
Lorentz and Levi-Civita on the first possibility see Cattani and DeMaria [1993], for a
recent discussion of the second possibility see Poisson [2004], especially section 4.3.
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bination is restricted to natural kinds.*?
On the other hand, the proposal that relational properties can be pos-
sessed essentially is not new either. Already Moore [1922] wrote:*

Let P be a relational property, and a a term to which it does in
fact belong. I propose to define what is meant by saying that P is
internal to a (in the sense we are now concerned with) that from
the proposition that a things [sic] has not got P, it ‘follows’ that
it is other than a.

One famous candidate for an essential relational property, arising from an
internal relation, has been proposed by Kripke , and it goes under the name
‘the essentiality of origin’. Kripke argues that it is an essential relational
property of every person that in every possible world they would have the
same parents they actually have (Kripke [1972], p.113):

How could a person originating from different parents, from a
totally different sperm and egg, be this very woman? One can
imagine, given the woman, that various things in her life could
have changed [...]. But what is harder to imagine is her being
born of different parents. It seems to me that anything coming
from a different origin would not be this object.

Let us accept Kripke’s assertion of the essentiality of origin as a working
hypothesis for now. Of course, there is an asymmetry here: even if one
thinks that it is an essential relational property of Albert that he is Hermann
Einstein’s son, this does not necessarily mean that it is also an essential

4Cf. Lewis [2001]. The principle of recombination states that it is possible to recombine
the natural kinds (like horses, horns, electrons) of the actual world in order to get a new
possible world. The principle of plenitude states that there actually is a possible world for
every recombination of the natural kinds of our world. The principle of recombination then
implies that a relation that holds in our world must not hold in every possible world (there
is a possible world in which Hermann Einstein does not have a son), and the principle of
plenitude implies that for every recombination there is indeed a possible word arising from
it. So there is no relation, and hence no relational property, that holds true of the same
object in every possible world. Hence, both principles together with our definition of what
an essential property of an object is (a property the respective object could not lack) imply
that every essential property must be an intrinsic property.

®ODunn [1990] distinguishes different senses of ‘internal relation’ with the help of his
relevance logic, but I will not introduce them here.
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relational property of Hermann that he is Albert’s father. In another world,
Hermann may not have had children, and still be the same Hermann Einstein,
whereas, according to Kripke, it is not possible for Albert to have another
father than Hermann and still be the same Albert Einstein.

Anyhow, note that the claim that mass-energy-momentum is an essential
relational property of matter is a much weaker claim than Kripke’s. There
is a crucial difference between claiming that every person essentially has a
particular pair of people as parents, and claiming that every material system
essentially possesses some mass-energy-momentum density.

So our case corresponds to a weaker version of Kripke’s original claim,
which one could formulate as follows: In order for ® to be a human being,
it needs to have some parents, but not a particular pair. Similarly, in order
for ® to be a matter field, it needs to have some mass-energy-momentum
density tensor T}, associated with it. The structure of its energy tensor 7,
only tells us what kind of matter a given matter field ® can describe — for
example, we need vanishing diagonal components for an electromagnetic field
and non-vanishing diagonal components for a perfect fluid — but in order to
know that it is a matter field in the first place, we only need to know that
there is an energy tensor associated with the field.

5 Conclusion

I started out by describing how Newton’s defining property of material sys-
tems — the property of possessing mass — was generalised by relativistic
field theory to the requirement that such systems need to have a mass-energy-
momentum density tensor 7}, associated with them.

We have then seen that energy tensors depend on both the matter fields
® and the metric field g,,, and looked at how energy tensors are derived
within the framework of Lagrangian field theories. We thereby saw that
the existence of mass-energy-momentum depends on the matter fields being
related to the metric field in a certain way: they need to couple to the metric
field.

Hence, in relativistic field theory, mass-energy-momentum cannot be re-
garded as an intrinsic property of matter, but must be seen as a relational
property of matter (or a property of systems containing matter) that it only
has because of its relation to spacetime structure.

Is it a surprising result that 7}, does not describe an intrinsic property
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of matter? After all, nobody would have claimed that the momentum of a
particle in Newtonian mechanics was an intrinsic property of this particle; it
is a property that only makes sense if we describe that particle as changing
its position with respect to something else. Even (kinetic) energy might be
regarded as a relational property in Newtonian mechanics, for it depends on
the velocity of the particle, which is a relational property for the same reason
as the momentum of the particle.

On the other hand, mass is an intrinsic property of material systems
in Newtonian mechanics: a body’s mass does not depend on the relation
the body has to other bodies, and given that the mass-energy momentum
density 7},, in the Einstein equations takes over the role the mass density p;
played in the Poisson equation of Newtonian theory, it may well be seen as
a surprise: the most important property of matter, and it is not intrinsic to
it.

In the introduction, I mentioned that Einstein himself was strongly mo-
tivated by a version of Mach’s principle when he created GR, a version in
which he claimed the geometric field g, should be determined by the energy
tensor T),,. Einstein’s idea was that spacetime structure should be derived
from the properties of material systems. We have seen that the energy ten-
sor already depends on spacetime structure, and that hence even a unique
determination of g,, by 7}, would not be sufficient for spacetime geometry
to be reduced to the properties of matter.

But neither does GR accord to what might be called an Anti-Machian
principle: even though the matter fields ® do not determine the spacetime
structure g, spacetime does not determine the material structures either:
both sides only constrain each other. In order to get a truly Anti-Machian
theory, we would need not only the energy tensor to depend on the metric
field, but the matter fields themselves would need to be derivable from the
structure of spacetime. An example of such a theory is Kaluza-Klein theory,
in which the electromagnetic vector potential forms part of the 5-dimensional
metric tensor, and hence leads to the electromagnetic field F),, itself to be
derivable from the geometric properties of spacetime.

But this leads us too far afield. The energy-momentum tensor of matter
depends on, but is not determined by, the structure of spacetime — and that
is enough for today.



REFERENCES 32

Acknowledgements

I am very grateful to Oliver Pooley, Harvey Brown, Jeremy Butterfield,
Eleanor Knox, Robert Geroch, Stephen Lyle, Tilman Sauer, Edward Slowik
and Stephen Tiley. Each of them read one or more than one version of
this paper, and helped improve it significantly with their comments and sug-
gestions. I wish to thank Oliver Pooley particularly, who showed endless
patience in reading what must have felt like 2 dozen different versions of the
paper — and it may actually have been that many. Any remaining errors
are of course solely mine.

I also thank Robert Geroch, Erik Curiel, Stephen Lyle and John Norton
for very helpful discussions, in particular about the energy tensors of different
fluid systems.

Last but not least, I am thankful to audiences in Oxford, Madrid, Mon-
treal and St. Andrews for helpful and fascinating debates.

References

F.J. Belinfante. On the current and the density of the electric charge, the energy, the
linear momentum and the angular momentum of arbitrary fields. Physica, vii:449-474.

Katherine A. Brading and Thomas A. Ryckman. Hilbert’s ‘foundations of physics’: Grav-
itation and electromagnetism within the axiomatic method. Studies in History and
Philosophy of Modern Physics, 39(102-153), 2008.

Harvey R. Brown. Physical Relativity. Space-time structure from a dynamical perspective.
Oxford University Press, 2005.

Harvey R. Brown and Katherine A. Brading. General covariance from the perspective of
noether’s theorems. Didlogos, 79:59-86, 2002.

Harvey R. Brown and Oliver Pooley. Minkowski space-time: a glorious non-entity. Elsevier,
2004.

Carlo Cattani and Michelangelo DeMaria. Conservation laws and gravitational waves
in general relativity (1915-1918). In Michel Jannsen John Earman and John Norton,
editors, Einstein Studies Volume 5: The Attraction of Gravitation: New Studies in the
History of General Relativity. Birkh&user, 1993.

F. DeFelice and C. Clarke. Relativity on Curved Manifolds. Cambridge Monographs on
Mathematical Physics. Cambridge University Press, 1990.

Noel A. Doughty. Lagrangian Interaction. Perseus Books, 1990.



REFERENCES 33

J. Michael Dunn. Relevant predication 2: Intrinsic properties and internal relations.
Philosophical Studies, 60:177-206, 1990.

John Earman and John Norton. What price substantivalism? the hole story. British
Journal for the Philosophy of Science, 38:515-525, 1987.

Albert Einstein. Zur Elektrodynamik bewegter Korper. Annalen der Physik, 17:891-921,
1905a.

Albert Einstein. Ist die Tréagheit eines K’/orpers von seinem Energieinhalt abhéngig? An-
nalen der Physik, 18:639-641, 1905b.

Albert Einstein. Die formale Grundlage der allgemeinen Relativitatstheorie. Sitzungs-
berichte der Kdoniglich Preussischen Akademie der Wissenschaften, pages 799-801, 1914.

Albert Einstein. Hamiltonsches prinzip und allgemeine relativitatstheorie. Sitzungsberichte
der Kéniglich Preussischen Akademie der Wissenschaften, pages 1111-1116, 1916.

Albert Einstein. Prinzipielles zur allgemeinen Relativitéitstheorie. Annalen der Physik, 55:
241-244, 1918.

Albert Einstein and Marcel Grossmann. Kovarianzeigenschaften der feldgleichungen der
auf die verallgemeinerte relativititstheorie gegriindeten gravitationstheorie. Zeitschrift
fiir Mathematik und Physik, 63:215-225, 1914.

Richard P. Feynman. Lectures on Physics. Addison Wesley, 1963.

Kit Fine. Essence and modality: The second philosophical perspectives lecture. Philo-
sophical Perspectives, 8(1-16), 1994.

Kit Fine. Senses of essence. In Nicholas Asher Walter Sinott-Armstrong, Diana Raffmann,
editor, Modality, Morality, and Belief. Cambridge University Press, 1995.

Francisco Flores. Interpretations of Einstein’s equation e = mc?. International Studies in
the Philosophy of Science, 19(3):245-260, 2005.

Michael Friedman. Foundations of Space-Time Theories: Relativistic Physics and Philos-
ophy of Science. Princeton University Press, Princeton, 1983.

Hubert F. M. Goenner. Theories of gravitation with nonminimal coupling of matter and
the gravitational field. Foundations of Physics, 14(9):865-881, 1984.

D.R. Grigore. The derivation of the einstein equations from invariance principles. Class.
Quantum Grav., 9:1555-71, 1992.

G S Hall. Symmetries and Curvature Structure in General Relativity, volume 46 of World
Scientific Lecture Notes in Physics. World Scientific, 2004.



REFERENCES 34

Stephen Hawking and G.F.R. Ellis. The Large Scale Structure of Space-Time. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, 1973.

David Hilbert. Die grundlagen der physik. Konigliche Gesellschaft der Wisenschaften zu
Gottingen, Nachrichten, 1915. Part I: (1915), p.395-407; Part II: (1916), p.53-76.

M. Hobson, G. Efstathiou, and A. Lasenby. General Relativity: An Introduction for
Physicists. Cambridge University Press, 2006.

Carl Hoefer. Einstein’s struggle for a machian gravitation theory. Studies in History and
Philosophy of Science, 25(3):287-335, 1994.

Carl Hoefer. The metaphysics of space-time substantivalism. The Journal of Philosophy,
93(1):5-27, 1996.

Max Jammer. Concepts of mass. Harvard University Press, 1961.

Michel Janssen. g the line between kinematics and dynamics in special relativity. PhilSci
Archive: 00003895, 2007.

Michel Janssen and Matthew Mecklenburg. From classical to relativistic mechanics: Elec-
tromagnetic models of the electron.

S. Kichenassamy. Variational derivations of Einstein’s equations. In Michel Jannsen
John Earman and John Norton, editors, Einstein Studies Volume 5: The Attraction
of Gravitation: New Studies in the History of General Relativity. Birkhauser, 1993.

S.A. Kripke. Naming and Necessity. Harvard University Press, 1972.

Cornelius Lanczos. The Variational Principles of Mechanics. Dover, 1986.

L.D. Landau and E.M. Lifschitz. The classical theory of fields. Oxford: Pergamon, 1989.
Marc Lange. The most famous equation. The Journal of Philosophy, 98(5):219-238, 2001.

Marc Lange. An Introduction to the Philosophy of Physics: Locality, Fields, Energy and
Mass. WileyBlackwell, 2002.

M. Leclerc. Canonical and gravitational stress-energy tensors. arXiv:gr-qc/0510044v6 25
Aug 2006.

Dennis Lehmkuhl. Is spacetime a gravitational field? In Dennis Dieks, editor, The
Ontology of Spacetime, volume 2. Elsevier, 2008.

David Lewis. Extrinsic properties. Philosophical Studies, 44:197-200, 1983.

David Lewis. On the Plurality of Worlds. Blackwell Publishing, 2001.



REFERENCES 35

H.A. Lorentz. Over einstein’s theorie der zwaartekracht. Koninklijike Akademie van
Wetenschappen te Amsterdam. Verslagen van de Gewone Vergaderingen der Wisen
Natuurkundige Afdeeling, 23:1073-1089, 1916. English Translation: ‘On Einstein’s The-
ory of Gravitation’. Koninklijike Akademie van Wetenschappen te Amsterdam. Proceed-
ings of the Section of Sciences 19: 751-767.

David Lovelock. The uniqueness of einstein field equations in a four-dimensional space.
Arch. Rat. Mech. Anal., 33:54-70, 1969.

David Lovelock. The uniqueness of einstein-maxwell field equations. General Relativity
and Gravitation, 5(4):399-408, 1974.

Hermann Minkowski. Raum und Zeit. Talk given at the 80th Tagung deutscher Natur-
forscher und Arzte in Cologne, 21.9.1908, 1908a. Reprinted in Lorentz, Einstein,
Minkowski 1982.

Hermann Minkowski. Die grundgleichungen fiir die elektromagnetischen vorgange in
bewegten korpern. Nachrichten der Kéniglichen Gesellschaft der Wissenschaften zu
Gottinngen, Mathematisch-Physikalische Klasse, pages 53—111, 1908b. Reprinted in:
Gesammelte Abhandlung von Hermann Minkowski, Vol.2, Leipzig, 1911, 352-404.

C .W. Misner, Kip. S. Thorne, and John A. Wheeler. Gravitation. Freeman, 1973.
G.E. Moore. External and internal relations. Philosophical Studies, pages 253-275, 1922.

John Norton. Einstein, Nordstrom and the early demise of Lorentz-covariant, scalar the-
ories of gravitation. Archive for History of Exact Sciences, 45:17-94, 1992.

John Norton. Why constructive relativity fails. PhilSci Archive: 00003655, 2007.

Eric Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cam-
bridge University Press, 2004.

Oliver Pooley. The Reality of Spacetime. Oxford University Press, forthcoming.

Teresa Robertson. Essential vs. accidental properties. In The Stan-
ford  Encyclopedia  of Philosophy. Edward N. Zalta, 2008. URL
http://plato.stanford.edu/archives/sum2008/entries/essential-accidental/.

Leon Rosenfeld. Sur le tenseur d’impulsion-energie. Mem. Roy. Acad. Belg. Cl. Sci. 18,,
(6), 1940.

Ricardo E. Gamboa Saravi. The electromagnetic energy-momentum tensor. J.Phys, A35:
9199-9204, 2002.

T. Sauer and U. Majer. Hilbert’s “world equations” and his vision of a unified science.
In J.Eisenstaedt A.J.Kox, editor, The Universe of General Relativity, volume 11 of
FEinstein Studies, pages 259-276. Birkhaeuser, 2005.



REFERENCES 36

Tilman Sauer. The relativity of discovery: Hilbert’s first note on the foundations of physics.
Archive for History of Exact Sciences, 53:529-575, 1999.

Andrzej Trautmann. Conservation laws in general relativity. In L. Witten, editor, Gravi-
tation: An Introduction to Current Research. John Wiley and Sons, 1962.

Vladimir Vizgin. Unified Field Theories in the first third of the 20th century. Birkhauser,
1994.

Max von Laue. Zur Dynamik der Relativitatstheorie. Annalen der Physik, 35:524-542,
1911a.

Max von Laue. Das Relativitdtsprinzip. Friedrich Vieweg und Sohn, 1911b.

Robert M. Wald. General Relativity. The University of Chicago Press, Chicago and
London, 1984.

Brian Weatherson. Intrinsic vs. extrinsic properties. In Edward N.
Zalta, editor, The Stanford FEncyclopedia of Philosophy. 2007. URL
http://plato.stanford.edu/archives/spr2007/entries/intrinsic-extrinsic/.

Steven Weinstein. Strange couplings and space-time structure. volume 63, Supplement.
Philosophy of Science Association, 1996.



