
The simple failure of Curie’s Principle

Bryan W. Roberts
University of Southern California

www.usc.edu/bryanroberts

August 6, 2012

Abstract. I point out a simple sense in which the standard for-
mulation of Curies Principle is false, when the symmetry transfor-
mation it describes is time reversal.

1. Introduction

John Earman has suggested that there is a simple formulation of
Curie’s Principle that is not only deeply intuitive, but “virtually ana-
lytic” (Earman 2004, p.173). He is not the only one to take this view1,
but gives one of its clearest statements. Earman formulates Curie’s
Principle as the claim: If,

(CP1) the laws of motion/field equations governing the system are
deterministic;

(CP2) the laws of motion/field equations governing the system are
invariant under a symmetry transformation; and

(CP3) the initial state of the system is invariant under said symmetry;
then

(CP4) the final state of the system is also invariant under said sym-
metry. (Earman 2004, p.176)

Speaking intuitively, one might just say: if no asymmetry goes in, then
no asymmetry comes out.

1For example, Mittelstaedt and Weingartner (2005, p.231) argue, on the tacit
assumption that the laws of physics are deterministic, that “from an asymmetric
effect and symmetric laws we may conclude asymmetric initial conditions.” Ismael
(1997, p.170) claims to have proven that “all characteristic symmetries of a Curie-
cause are also characteristic symmetries of its effect.” Curie himself suggests that
his principle is an a priori truth (Curie 1894); see (Brading and Castellani 2003,
p.311-313) for an English translation of his famous article.
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I would like to point out a simple sense in which this formulation
of Curie’s Principle fails, when the symmetry transformation is time
reversal. I will begin by illustrating a very simple counterexample in
classical Hamiltonian mechanics, and then show how this counterex-
ample is endemic to quantum mechanics and quantum field theory. I
conclude by discussing three revised principles, which avoid the coun-
terexample, but do not appear to adequately capture the formulation
of Curie’s principle expressed above.

2. The simple failure of Curie’s Principle

2.1. In pictures. Take a harmonic oscillator, such as a bob on a
spring. It is manifestly time reversal invariant, in that for every pos-
sible motion of the bob, there is a “time-reversed motion” that is also
possible.

We must now describe how the instantaneous state of the bob trans-
forms under time reversal. The standard answer, found in any physics
book on the topic, specifies that the position of a state remains un-
changed, while the direction of the momentum is reversed. The intu-
ition for this just comes from imagining that we film the motion of the
bob, and then play the film in reverse. Looking at an instantaneous
state and asking what time reversal does is like looking at a single
“frame” of the film, and asking how it differs in the past-directed ver-
sion as opposed to the future-directed version. The answer is that,
since rightward motion in the original film becomes leftward in the re-
versed film, the momenta simply reverse sign. It follows that a state of
this system is “invariant” (or “unchanged” or “preserved”) under time
reversal if and only if the momentum of that state is zero.

Let us now suppose that this particular bob-spring system begins its
motion at time t = 0 with the spring compressed out of equilibrium,
and with no initial momentum, as in Figure 1(a). The bob then springs
back in the other direction, acquiring some non-zero momentum, as in
Figure 1(b). How does time reversal transform these initial and final
states?

Our initial state has zero momentum, so it is preserved by the time
reversal operator. But the final state has non-zero momentum, which
reverses direction under the time reversal operator. The result: the
laws of motion for the harmonic oscillator are time reversal invariant,
and the initial state is preserved by the time reversal operator, but the
final state is not. The harmonic oscillator is a system for which Curie’s
Principle, on this formulation2, fails.

2Alternative formulations of Curie’s Principle will be considered in Section 4.
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(a) Initial state (b) Final state

Figure 1. (a) A harmonic oscillator initially compressed out
of equilibrium with zero momentum. (b) A final state for
which the system has non-zero momentum.

(a) Time reversed initial
state

(b) Time reversed final state

Figure 2. (a) The initial state has no momentum, and so
is preserved by time reversal. (b) A final state has non-zero
momentum, and so is not preserved by time reversal.

2.2. Mathematical verification. Let’s do the exercise of checking
this result in Hamiltonian mechanics. The possible states of the har-
monic oscillator are the possible values for the position and momentum
(q, p) of the bob in phase space. The laws of motion for the system are
Hamilton’s equations,

d

dt
q(t) =

∂

∂p
h(q, p),

d

dt
p(t) = − ∂

∂q
h(q, p).

The Hamiltonian h(q, p) for the harmonic oscillator is h(q, p) = q2 +p2.
The laws of motion are thus manifestly time reversal invariant, in that
if (q(t), p(t)) is a possible trajectory, then (q(−t),−p(−t)) is a possible
trajectory as well3.

3To verify: Let (q(t), p(t)) be a solution to Hamilton’s equations. The Hamilton-
ian h(q, p) = p2 + q2 has the property that h(q, p) = h(q,−p). So, Hamilton’s equa-
tions also hold for h(q,−p). But Hamilton’s equations hold for all values of t, and
therefore under the substitution t 7→ −t. Making this substitution, we thus find that
−(d/dt)q(−t) = ∂h(q, p)/∂p and hence that (d/dt)q(−t) = ∂h(q,−p)/∂(−p); sim-
ilarly, −(d/dt)p(−t) = −∂h(q, p)/∂q, and hence (d/dt)(−p(−t)) = −∂h(q,−p)/∂q.
That is, (q(−t),−p(−t)) is also a solution to Hamilton’s equations.
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We now need to check that there is a trajectory with an initial state
that is preserved by time reversal, and a final state that is not. One
such trajectory is the following, which one can check4 is a solution to
the laws of motion above:

q(t) = cos(2t), p(t) = − sin(2t).

At time t = 0, this system has zero momentum, since p(0) = sin(0) = 0.
But it has non-zero momentum for the subsequent times 0 < t < 2π.
The time reversal operator T : (q, p) 7→ (q,−p) therefore preserves the
initial state, but not all later states.

2.3. Summary. Here is what we have observed in the example above:

(1) The harmonic oscillator is time reversal invariant. This is a
simple mathematical fact about the law of motion for the har-
monic oscillator.

(2) The harmonic oscillator has a trajectory for which the initial
state is preserved under time reversal. We choose a trajectory
for which the harmonic oscillator is not always in equilibrium,
and then choose an initial state with zero momentum.

(3) Not all later states of the same trajectory are so preserved. The
later states of the harmonic oscillator have non-zero momentum,
and so are not preserved by the time reversal operator.

Curie’s Principle thus fails when the symmetry transformation is
time reversal.

3. Robust failure in quantum theory

Our example above made use of the way that the classical position
and momentum variables (q, p) transform under time reversal. But
Curie’s Principle fails just as badly in quantum theory, and we need
not make any mention of position or momentum to show this5. I’ll begin
by describing the standard definition of time reversal and time reversal
invariance in quantum theory, and then show how Curie’s Principle
fails.

4Namely, dq/dt = (d/dt)(cos(2t)) = −2 sin(2t) = 2p(t) = ∂h/∂p, and dp/dt =
(d/dt)(− sin(2t)) = −2 cos(2t) = −2q(t) = −∂h/∂q.

5In fact, there is a similarly robust way to describe this failure in the geometric
formulation of classical mechanics (a classic textbook in this formulation is Abra-
ham and Marsden 1978). But that discussion lies outside the scope of the simple
point I would like to make here.
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3.1. Time reversal in quantum theory. Curie’s Principle fails quite
generally in both non-relativistic quantum mechanics and in relativis-
tic quantum field theory. To keep the discussion general enough to
apply to both, I will characterize the spacetime on which quantum
theory takes place as an affine space M, which admits a foliation into
spacelike hypersurfaces. This will allow us to think of M as either a
non-relativistic spacetime (such as Newtonian or Galilei spacetime), or
a relativistic spacetime (such as Minkowski spacetime).

The vector states of a quantum system will be described by vectors
in a Hilbert space H. For any foliation Σt of the spacetime M into
spacelike hypersurfaces, we take there to be a continuous one-parameter
group of unitary opeartors Ut = e−itH . This group describes the way
any initial state ψ ∈ H changes over time, by the rule,

ψ(t) = e−itHψ.

In differential form, this law becomes the familiar Schrödinger equation
i(d/dt)ψ(t) = Hψ(t), which holds for all ψ(t) in the domain of H.

Time reversal in quantum mechanics is a transformation that takes
a trajectory ψ(t) to a new trajectory Tψ(−t), where T : H → H is
a bijection called the time reversal operator. This operator T has the
special property of being antiunitary. An antiunitary operator satisfies
T ∗T = TT ∗ = I, but it is antilinear instead of linear, meaning that for
any two vectors ψ and φ and for any complex constants a and b,

(1) T (aψ + bφ) = a∗Tψ + b∗Tφ.

Although unusual, antiunitarity is absolutely essential to capturing the
meaning of time reversal in quantum theory; Wigner (1931, §20) re-
mains one of the best discussions of this principle.

A quantum system (H, e−itH) is time reversal invariant if, whenever
ψ(t) is a solution to the law of motion, then so is Tψ(−t). This is
equivalent6 to the statement,

(2) THT−1 = H,

where H is the generator (the “Hamiltonian”) appearing in the unitary
dynamics Ut = e−itH .

3.2. Curie’s Principle in quantum theory. Here is how Curie’s
Principle goes awry in this theory. Let (H, e−itH) be any time reversal
invariant quantum system, in that THT−1 = H. Suppose the initial
state ψ is preserved by the time reversal operator, Tψ = ψ. Then it is
not generally true that Tψ(t) = ψ(t) for all t.

6This was pointed out, for example, in (Earman 2002, p.248).
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To see why, notice first that since Tψ = ψ, we may bring the T over
and write ψ = T−1ψ, and thus that Te−itHψ = Te−itHT−1ψ. This
allows a simple calculation:

Tψ(t) = Te−itHT−1ψ = eT (−itH)T−1

ψ = eitTHT−1

ψ = eitHψ = ψ(−t).

The second equality follows from the functional calculus7, the third
from the antilinearity of T expressed in Equation (1), and the fourth
from the assumption of time reversal invariance expressed in Equation
(2).

From this it is clear that later states will be preserved by time reversal
(that is, Tψ(t) = ψ(t)) if and only if ψ(t) = ψ(−t). In other words, the
trajectory ψ(t) would have to be symmetric about initial time t = 0.
This is not generally the case. Even worse: since Curie’s Principle is
supposed to hold of any initial state, its satisfaction would imply that
ψ(t) = ψ(−t) for all states, at all times t. This is only possible if the
state ψ(t) = ψ is fixed for all of time8. So, Curie’s Principle fails for
every quantum system that is interesting enough to allow any change
whatsoever in time.

In summary: the time reversal invariance of a quantum system
(H,Ut) implies that TUtψ = U−tTψ. So, if Tψ = ψ, then TUtψ = U−tψ.
This contradicts the conclusion of Curie’s Principle, that TUtψ = Utψ,
in all but the simplest of cases.

4. Revising Curie’s Principle

There are at least three ways to revise Curie’s Principle to get a true
proposition. None seem to me to provide a satisfactory way to capture
the principle. Let me discuss each of them in turn.

7There is an easy way to see this without the functional calculus, by restricting
attention to the so-called “analytic vectors” of H. Such a vector ψ allows the

expansion of the exponential as e−itHψ =
∑ (−itH)k

k! ψ. Since TT−1 = I, we can

write T (−itH)kT−1 = (−TitHT−1)k. So, applying T to our expansion we see that

Te−itHT−1ψ =
∑ T (−itH)kT−1

k! ψ =
∑ (−TitHT−1)k

k! ψ = eT (−itH)T−1

ψ.
8Proof: we will show that for any initial state ψ and for all t ∈ R, ψ(t) =

ψ. Let ψ ∈ H and let t ∈ R. Define a new initial state φ := e−i(t/2)Hψ, with
φ(t) := e−itHφ. Curie’s principle implies that ψ(t) = ψ(−t) for all trajectories
and for all times; hence in particular φ(t/2) = φ(−t/2). But φ(t/2) = e−i(t/2)Hφ =
e−i(t/2)He−i(t/2)Hψ = ψ(t), while φ(−t/2) = eitHe−itHψ = ψ. Therefore, ψ(t) = ψ,
which proves the claim.
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4.1. Argue time reversal is not a symmetry. One way to revise
Curie’s Principle is to restrict what counts as a “symmetry transforma-
tion.” By excluding problematic transformations like time reversal, one
can produce mathematically correct replacements for Curie’s Principle.

Earman himself has formulated one such statement, which he takes
to capture Curie’s Principle in the algebraic framework for quantum
field theory. He begins with a C∗ algebra, with an automorphism group
α describing the dynamics. His approach is then to characterize a
“symmetry transformation” in quantum field theory as (linear) auto-
morphism θ of the C∗ algebra. In this framework, Earman writes:

Proposition 2 (Curie’s Principle). Suppose that the ini-

tial state ωo is θ-symmetric (i.e. θ̂ωo := ωo ◦θ = ωo) and
that the dynamics α is also θ-symmetric (i.e. θαθ−1 =
α). Then the evolved state ω1 := α̂ωo is θ-symmetric.
(Earman 2004, p.198)

This certainly resembles Curie’s principle: the dynamics are determin-
istic (CP1), the dynamics are preserved by a symmetry (CP2), the
initial state is preserved by the symmetry (CP3), and we conclude
that the final state is preserved by the symmetry (CP4). There is also
an easy analogue in non-relativistic quantum mechanics. There, the
approach would be to characterize a symmetry transformation θ as a
(linear) unitary transformation on a Hilbert space H. Then we have:

Non-Relativistic Proposition 2. Suppose that the initial
state ψ0 ∈ H is θ-symmetric (i.e. θψ0 = ψ0) and that
the unitary group e−itH generating the dynamics is also
θ-symmetric (i.e. θe−itHθ−1 = e−itH). Then the evolved
state ψ1 := e−itHψ0 is θ-symmetric.

Both of these propositions are mathematically correct, and their proofs
are trivial9. Time reversal is excluded from the content of both propo-
sitions, because the time reversal operator in quantum theory is not
linear but anti linear; see Section 3.1.

Although Earman’s approach saves a Curie-like principle, it is at
the expense of the orthodox definition of symmetry transformations
in quantum theory. In quantum theory, symmetry transformations in-
clude not only the linear-unitary transformations, but the anti linear-
antiunitary transformations as well. In the algebraic framework in

9Earman states the former; the latter is similar: θψ1 = θe−itHψ0 = e−itHθψ0 =
e−itHψ0 = ψ1
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which Earman works, symmetry transformations include both linear-
automorphisms and antilinear-anti-automorphisms. This is the ortho-
dox view of symmetries, arising out of Wigner’s theorem and its gen-
eralizations10. So, these revised statements fall short of capturing the
original statement of Curie’s Principle, in excluding an important class
of orthodox symmetries.

A clever next response is to notice that, although Earman’s discus-
sion does not mention antilinear operators, the above two propositions
actually do hold when θ is antilinear! (Their proofs go through in the
very same way.) However, when θ = T is the time reversal operator,
the premise that θe−itHθ−1 = e−itH (or θαθ−1 = α in the relativistic
version) does not capture the usual notion of “invariance” under time
reversal in quantum theory. As we saw in Section 3.1, time reversal
invariance is equivalent to the statement that THT−1 = H. But since
T is antilinear, this implies that

Te−itHT−1 = eT (−itH)T−1

= eitTHT−1

= eitH .

That is, time reversal invariance does not mean that the dynamics are
unchanged, but that the temporal order is reversed. This observation
suggests that one might rescue Curie’s principle by modifying what it
means for the laws of motion to be “invariant” under a transformation.
This is the option that I will describe next.

4.2. Argue for a non-standard notion of invariance. This re-
sponse argues for a non-standard notion of “invariance” of the laws of
motion under a symmetry transformation. This strategy is to modify
Earman’s statement (CP2) along the following lines.

(CP2′) If an initial state is invariant under a symmetry transformation,
then so is the final state.

This statement, together with Earman’s statement (CP3) “the initial
state of the system is invariant under said symmetry transformation,”
obviously implies (CP4): “the final state of the system is also invariant
under said symmetry transformation.” Thus we have another correct
statement that resembles Curie’s Principle. And we have already seen
a mathematical expression of it in quantum theory: it is simply the
above Proposition 2 (in relativistic or non-relativistic form) opened up
to allow both linear and antilinear transformations.

10Cf. (Wigner 1931, §20), (Uhlhorn 1963), (Varadarajan 2007, Theorem 4.29);
the latter two take a symmetry to be an automorphism of the lattice of projec-
tions, which extend to both automorphisms and the anti-automorphisms of the C∗

algebra.
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Unfortunately, this does not appear to me to be an interesting way
to capture Curie’s Principle, because it is not the standard meaning of
“invariance” or “symmetry” of the laws, and because it renders Curie’s
Principle so trivial it runs the risk of being uninteresting.

First, on the “invariance” or “symmetry” of a law under a trans-
formation: when cashed out precisely11, this is always taken to mean
that the set of models (or trajectories) of the laws are preserved. In
other words, a deterministic law is invariant under a transformation
if, whenever a trajectory ψ(t) is a solution to the law, so is the trans-
formed trajectory ψ′(t′). This is the meaning that Earman has in mind
in his statement (CP2), stating that a symmetry “carries solutions to
solutions” (Earman 2004, p.176). If we follow Earman in interpreting
the notion of invariance/symmetry of the laws in the standard way,
then we do not get (CP2′).

More importantly, this approach to Curie’s Principle is so trivial as
to appear devoid of content. The expression, “(CP2′) and (CP3) im-
plies (CP4)” is just a tautology of the form, “A → B and A implies
B.” This is more of a linguistic inference rule than it is a symmetry
principle relating the symmetries of states and laws, as Curie’s Prin-
ciple is generally taken to be. Some may be content to trivialize the
statement in this way. But I do not think this is what Curie himself
had in mind. Curie wrote:

When certain causes produce certain effects, the symme-
try elements of the causes must be found in the produced
effects (Curie 1894, p.401)12.

If by “causes” Curie means the laws and the initial state, and if by
“symmetry” he means the standard interpretation discussed above,
then Curie’s Principle is best stated along the lines that Earman has
formulated in (CP1)-(CP4), and not by the revision expressed in (CP2′).

4.3. Argue that Curie’s Principle is about trajectories. A third
response is to retain the orthodox definitions of symmetry and invari-
ance, but to modify the kind of object that Curie’s Principle is about.
The last premise and the conclusion of Curie’s Principle (Earman’s
CP3 and CP4) are about states. They read:

(CP3) the initial state of the system is invariant under the symmetry;
(CP4) the final state of the system is invariant under said symmetry.

11When precision is sacrificed, this phrase is sometimes taken to mean that the
“form” of the laws does not change under a transformation.

12English translation from (Brading and Castellani 2003, p.312).
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But premise (CP2) is about invariance of the laws, which on the stan-
dard interpretation refers to an entire trajectory. In particular (as
discussed in the previous subsection), the laws are invariant under a
transformation if whenever ψ(t) is a possible trajectory, then so is the
transformed trajectory ψ′(t′). So, we can view the trouble with Curie’s
principle as one of discord between two objects interest: states in one
premise, and trajectories in another.

One can bring these objects of interest into closer agreement by mak-
ing all the premises of Curie’s principle about trajectories. To do this,
let us write {ψ(t) = e−itHψ | t ∈ R} to denote the trajectory with
initial state ψ. We begin by distinguishing two senses in which a state
ψ(t) in that trajectory can be “symmetric” with respect to a symmetry
transformation.

(1) A state ψ(t) at a time t is S-symmetric in the original order if
Sψ(t) = ψ(t).

(2) A state ψ(t) at a time t is S-symmetric in the reverse order if
Sψ(t) = ψ(−t).

This is not such an unusual distinction, when one recalls (from the end
of Section 4.1) that the standard definition of time reversal invariance
entails a similar reversal of sign: Te−itHT−1 = eitH .

We can now express a revision of Curie’s Principle: If,

(CP1) the laws of motion/field equations governing the system are
deterministic;

(CP2) the laws of motion/field equations governing the system are
invariant under a symmetry transformation; and

(CP3′) the state of the system at some fixed time t0 is symmetric under
said symmetry (in the original or reverse order);
then,

(CP4′) the state of the system at any time t is symmetric under said
symmetry (in the same order).

In the context of ordinary quantum mechanics, this statement corre-
sponds to the following two facts13.

Fact 1. Suppose a state ψ(t0) := e−it0Hψ at a fixed time t0 is θ-
symmetric in the original order (i.e. θψ(t0) = ψ(t0)), and that the
unitary group e−itH generating the dynamics is invariant under θ in
the original order (i.e. θe−itHθ−1 = e−itH). Then for all times t, the
state ψ(t) = e−itHψ is θ-symmetric in the same order.

13Fact 1 follows from the non-relativistic version of Proposition 2 in the last
subsection. Fact 2 is proved: Tψ(t) = Te−i(t−t0)He−it0Hψ = Te−i(t−t0)Hψ(t0) =
ei(t−t0)HTψ(t0) = ei(t−t0)ψ(−t0) = ei(t−t0)Heit0Hψ = eitHψ = ψ(−t).
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Fact 2. Suppose a state ψ(t0) := e−it0Hψ at a fixed time t0 is θ-
symmetric in the reverse order (i.e. θψ(t0) = ψ(−t0)), and that the
unitary group e−itH generating the dynamics is invariant under θ in
the reverse order (i.e. θe−itHθ−1 = eitH). Then for all times t, the state
ψ(t) = e−itHψ is θ-symmetric in the reverse order.

We have again arrived at a correct mathematical statement. Time
reversal is no longer excluded, being captured now by Fact 2. We have
moreover retained the usual definition of a “symmetry/invariance” of
the laws. But is this Curie’s Principle? Strictly speaking, Curie’s Prin-
ciple says that if the initial state is preserved by a symmetry transfor-
mation, then so is the final state. This is not what is described by Fact
2 above, where the symmetry transformation “flips” each state about
the temporal origin. Facts 1 and 2 perhaps express a more natural
principle, in bringing the premises into closer alignment. But they do
not capture the original expression of Curie’s Principle.

5. Conclusion

There does not appear to be much hope for the standard statement of
Curie’s Principle formulated in the first section. Time reversal provides
a simple counterexample. We have seen that there remain statements
like Curie’s Principle that are mathematically correct. They can be
achieved either by excluding symmetry transformations like time re-
versal, or by modifying the statements (CP2)-(CP4) appearing in the
principle. However, the standard statement of Curie’s Principle, given
the standard meaning of the language therein, is false. It is false in
classical Hamiltonian mechanics, false in quantum mechanics. This
appears to be a dramatic failure indeed.
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