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ABSTRACT

A notion of entanglement between algebras is defined here, which natu-
rally applies to both relativistic quantum field theory and ordinary quantum
mechanics. This puts one in a position to compare the behaviour of entangled
correlations in the two theories. We then show that entanglement is more ro-
bust in the relativistic context. In particular, we develop a result by Clifton
and Halvorson (2001) claiming that entanglement in algebraic quantum field
theory would persist, no matter what local operations one performs.

1 Introduction

When introducing the concept of entanglement in 1935, Erwin Schrodinger
identified it as the characteristic trait of quantum mechanics, having no ana-
logue in the classical world. He pointed out some of its puzzling consequences,
which reflect the non-local nature of quantum states. That even led him to
doubt that the theory could be extended to a relativistic version. Yet, quan-
tum field theory, that is the synthesis of quantum mechanics and special
relativity, has been experimentally confirmed. Entangled states do exist in
such a framework. It is then an intriguing problem for philosophy of physics
whether adding relativistic constraints to quantum theory makes entangled
correlations more robust; and if so, in what sense.

With the recent development of quantum information theory, entangle-
ment, rather than being a source of conceptual difficulties, has become a
resource to exploit. An issue which is thus interesting in its own is what an
experimenter can or cannot do with entanglement in a relativistic context.
Clifton and Halvorson (2001) maintained that, contrary to non-relativistic
quantum mechanics, it is not always possible for an experimenter to de-
stroy entanglement between spacelike separated quantum field systems by



performing local operations. Their argument is cast in the framework of Al-
gebraic Quantum Field Theory (AQFT), which is an axiomatic formulation
of quantum field theory.

We offer this result as one way to make precise the sense in which
AQFT requires a radical change in paradigm - a change that, re-
grettably, has passed virtually unnoticed by philosophers of quan-
tum theory. [Clifton-Halvorson (2001), p.5]

After spelling out their result, they added that

... the advantage of the formalism of AQFT is that it allows us to
see clearly just how much more deeply entrenched entanglement
is in relativistic quantum theory. At the very least, this should
serve as a strong note of caution to those who would quickly assert

that quantum nonlocality cannot peacefully exist with relativity.
[Clifton-Halvorson (2001), p.28]

The formalism of AQFT is that of the algebraic approach to physical
theories, which we briefly review in section 2. Within such a general mathe-
matical setting, we define the notion of entanglement between algebras. This
provides one with a criterion for comparing entangled correlations in ordi-
nary quantum mechanics and quantum field theory. In section 2.2 we discuss
one sense in which entanglement is more robust in the relativistic case. We
then address the argument by Clifton and Halvorson and demonstrate that
it is not as general as it may seem (section 3.1). After giving a precise formu-
lation of the impossibility in principle of local disentanglement, we conclude
the last section by showing how their result can be extended.

2 Entangled correlations: algebraically

In the algebraic approach physical observables are represented by self-adjoint
operators which are elements of an algebra. The algebras describing classical
systems are commutative, whereas those describing quantum systems are
noncommutative. States of a physical system are given by positive, linear,
normalized functionals on the algebra. Throughout the paper we assume that
states are normal (i.e. countably additive) states. The algebraic formalism
provides a rigorous framework for various physical theories. So, investigating
structural features of the relevant algebras can reveal conceptual differences
between such theories.



In particular, the theory of von Neumann algebra factors! encompasses
both non-relativistic and relativistic quantum theories. The distinction be-
tween the corresponding algebraic structures is emphasized by Rudolf Haag,
one of the founders of AQFT, in the following passage of his seminal book
Local Quantum Physics:

in quantum mechanics ... we can associate to each system or sub-
system an algebra of type I, i.e. an algebra isomorphic to the set
of all bounded operators on Hilbert space [i.e. the algebra B(H)].
The change from the materially defined systems in mechanics to
“open subsystems” corresponding to sharply defined regions in
space-time in a relativistic local theory forces the change in the
nature of the algebras from type I to type I11;. [Haag (1996),
p.267]

According to Haag, at the fundamental level a division of the physical world
into “subsystems” can be achieved in terms of spacetime regions. The prim-
itive concept of AQFT is in fact the map

0 — A(O)

associating any finite region of Minkowski space, in which a quantum field
system would be localized, with a local algebra. A(O) contains all local
observables that can be measured in O. A set of physically and mathemati-
cally motivated axioms determines the type III character of the local algebras.
Typical geometric configurations for bounded spacetime regions are double
cones, formed by the intersection of the forward light-cone of a point with the
backward light-cone of another timelike separated point. Spacelike separated
regions are tangent if their closures intersect at one point; otherwise, they
are strictly spacelike separated.

The postulates of special relativity are built in the theory by two axioms,
namely relativistic covariance and microcausality. While the former assures
that the group of symmetry is the Poincaré group, the latter expresses Ein-
stein’s principle of locality: it requires that local algebras corresponding to
spacelike separated regions mutually commute, so that measurements of ob-
servables in the two algebras cannot disturb each other. To put it formally,
if O, is contained in the causal complement? of Op, that is O, C O, then

1See Redei and Summers (2007) for an accessible overview of von Neumann algebra
factors and their classification in types.

2The causal complement of a region comprises the set of points in Minkowski space
which are spacelike separated from all points in the region.



A(O4,) is contained in the commutant® of A(Op), that is A(O4) C A(Op)'.
Importantly, such a local relativistic character of the algebras peacefully co-
exists with the quantum non-locality associated with the existence of entan-
gled states. Bell’s inequality is indeed violated in AQFT. Also, peculiar non-
local effects are predicted by the Reeh-Schlieder theorem, which is a result of
quantum field theory with no non-relativistic analogue. We thus agree with
Clifton and Halvorson that what would make (sub-)systems open for Haag is
the fact that “quantum field systems are unavoidably and intrinsically open
to entanglement” (p.4). This claim is corroborated by entanglement being
more robust in relativistic quantum field theory than in ordinary quantum
mechanics. The algebraic approach supplies the means to demonstrate it in
a neat and rigorous manner: one can describe entangled correlations in terms
of general algebras and then contrast their behaviour in type I and type III
factors.

2.1 Entanglement between algebras

Let A and B be two von Neumann algebras (with common unit) describing
distinct physical systems, say A and B, respectively. The state ¢ defined on
the joint algebra A V B represents the global state of the composite system
A + B. Such a state is said to be entangled across (A, B) just in case it
cannot be written as the (weak-*) limit of convex combinations of product
states on the joint algebra; otherwise, ¢ is called separable or unentangled.
As product states amount to classical probabilities, it means that entangled
states cannot be reconstructed out of classical correlations. This formalizes
Schrodinger’s remark that entanglement is a non-classical feature of quan-
tum states. No uniquely defined measure of the degrees of entanglement is
actually available in the literature. Yet, one can extract information as to
whether a state is entangled from the behaviour of the maximal Bell cor-
relation! 3(¢, A, B). Indeed, entanglement is a necessary condition for the
failure of Bell’s inequality. So, if 3(¢,.A, B) attains a value greater than 1,
the global state ¢ must be entangled across (A, B). Furthermore, if Bell’s in-
equality is maximally violated, i.e. 3(¢, A, B) = v/2, one infers that ¢ would

3The commutant of an algebra is defined as the set of all self-adjoint operators that
commute with any element of the algebra.

4The maximal Bell correlation was introduced by Summers and Werner (1985) to derive
the algebraic form of Bell’s inequality. It is defined by the relation

B0, A.B) = 3 sup 6(A41(By + By) + As(By — By)) )

where the supremum is taken over the observables 4; » € A and B; > € B. Accordingly,
Bell’s inequality is expressed by 8(¢, A, B) < 1.
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be maximally entangled.

The notion of entanglement between algebras hinges on the fact that there
exists a whole set of states across any pair of algebras. They correspond to
all possible global states that the relevant physical systems can share. We
can then introduce the following definitions, which presuppose the notion of
entanglement of a state.

The algebras A and B are said to be entangled if and only if there exists
some entangled state across them

The algebras A and B are said to be deeply entangled if and only if there is
a dense set of entangled states across them

The algebras A and B are said to be intrinsically entangled if and only if all
states across them are entangled

For two algebras to be entangled it is sufficient that at least one state across
them, no matter which one, is entangled. Hence, A and B are not entangled
just in case any global state is separable. A theorem by Raggio and Bac-
ciagaluppi (1993) gives insight into this concept. Suppose the algebras are
mutually commuting, then it follows that all states across them are unen-
tangled if and only if A or B is commutative. Accordingly, even if just one
of two physical systems is classical, no state across the relevant algebras can
be entangled, thus enforcing the idea that entanglement is a peculiar feature
of quantum mechanics. As an immediate corollary, one obtains a necessary
and sufficient condition for entanglement between two algebras: A and B are
entangled if and only if they are both noncommutative. The concept of a pair
of algebras being intrinsically entangled stands at the opposite side of the
spectrum as it requires that entanglement of a state is endemic for (A, B). In
such a case, no global state is separable. Between these two extremes there is
a range of possible configurations for the set of all states on the joint algebra.
The notion of deeply entangled algebras becomes particularly interesting in
that, under the choice of a suitable metric, it would lead one to establishing
that the overwhelming majority of states across A and B are entangled.

A more refined characterization of these notions sues for specifying the
degrees of entanglement between algebras. The relevant measure should
possibly compute the number of global states which are entangled. A yet
finer-grained quantification would also take into account the degrees of en-
tanglement of each state. Here we just introduce the following definition.



The algebras A and B are said to be mazimally (intrinsically) entangled if
and only if they are intrinsically entangled and all states across them are
maximally entangled

Pairs of algebras such that the Bell’s inequality is maximally violated for all
global states would then be maximally intrinsically entangled.

Notice that no assumption has been made regarding the structure of the
algebras A and B. The above definitions are indeed general. They naturally
apply to both type I and type III factors.

2.2 Intrinsically entangled local algebras

In AQFT the state of a global field is a state ¢ defined on the joint alge-
bra A(O4) V A(Op), with O4 and Op being spacelike separated regions of
Minkowski space, in which two quantum field systems would be localized.
Such a global state is said to be entangled across (O4, Opg) just in case it
does not lie in the (weak-*) convex hull of product states on the joint algebra.
With slight abuse of language, we refer to entanglement between two local
algebras as entanglement across the corresponding regions.

Since A(O4) and A(Op) commute with each other by microcausality
and they are noncommutative type III factors, the Raggio-Bacciagaluppi
theorem guarantees the presence of at least one entangled global state ¢
across them. Accordingly, O4 and Op are entangled. However, this fact
is equally true for any pair of (mutually commuting) type I factors as well.
A quite remarkable difference between the two cases arises, instead, with
respect to intrinsically entangled algebras. In ordinary quantum mechanics,
the tensor product structure holding for the description in Hilbert space of
composite systems entails that there always exists some product state, and
hence some separable global state. Accordingly, no pair of algebras describing
distinct non-relativistic quantum systems can be intrinsically entangled. To
the contrary, as we now show, in AQFT there are plenty of spacelike separated
regions such that all states across them are entangled. It means that the
quantum field systems localized in such regions are entangled in any possible
global state. This is our first sense in which entanglement is more robust in
the relativistic context.

Let us see a first concrete example. The environment of a quantum field is
defined as the causal complement O’ of the region O of Minkowski spacetime
where the system is localized. Many models of free quantum field theories
verify the so-called duality relation. That is a strengthening of microcausality
which asserts that the local algebra associated with O’ is equivalent to the



commutant of the local algebra associated with O. Summers (1990) proved
that for any state across a type IlI factor and its commutant the maximal Bell
correlation attains its maximal value. This algebraic fact combined with the
duality relation yields 3(¢, A(O), A(O)") = /2 for any state ¢. It follows,
strikingly enough, that any arbitrary spacetime region and its environment
would be maximally intrinsically entangled, even for non-interacting fields.

The same conclusion can be drawn for two quantum field systems local-
ized in tangent spacelike separated regions O, and Op. All states across
such regions are maximally entangled. In fact, as Summers and Werner
(1988) demonstrated, they maximally violate Bell’s inequality. Therefore,
any pair of tangent regions, irrespective of their geometrical configuration,
are maximally intrinsically entangled. For strictly spacelike separated re-
gions, though, the situation may be less dramatic. The maximal Bell corre-
lation is known to decrease with the minimum Lorentz distance d(Oy4, Op)
between the regions. Of course, when (¢, A(O4), A(Op)) takes its value in
the open interval |1, v/2[ for all global state ¢, the Bell’s inequality is neither
satisfied nor maximally violated®. The corresponding regions would thus be
intrinsically entangled, although not maximally entangled.

However, if O4 and Op are strictly spacelike separated double cones there
may be unentangled states across them, at least if they are sufficiently far
apart. Specifically, there exists some product state if and only if the split
property holds (Buchholz (1974)). The local algebras A(O4) and A(Op) are
split® if, for any double cone o containing the closure of Oy, there is a type
I factor M such that

A(O4) c M C AO,) C A(Op) (2)

The split property is verified by many concrete and physically relevant models
of quantum field theories, such as that of free neutral massive scalar fields.
Crudely put, such an algebraic configuration is the closest one would get to
the non-relativistic case in a relativistic context. This intuition is captured by
the type I character of the factor M approximating the local algebra A(O,4),
in the sense that @4 can be arbitrarily larger than ©4. A tensor product
structure between two type III factors can indeed be defined whenever they
are split. That is the only circumstance in which spacelike separated regions
fail to be intrinsically entangled in AQFT.

SIncidentally, this is the case for the so-called wedge regions, no matter what their
degree of spacelike separation is (see Summers and Werner (1995)).

6Here we take up the characterization of the split property given by Summers (2009).
He argues, among other things, that it yields a notion of independence that makes it
meaningful to speak of “subsystems” in relativistic quantum theory.



Yet, even in such a case, entanglement proves very robust. As a general
consequence of the Reeh-Schlieder theorem, there exists a dense set of entan-
gled states across (O 4, Op). Recall that a vector-state x in the Hilbert space
‘H underlying the von Neumann algebra A is cyclic for the latter just in case
the set {Ax|A € A} is dense in ‘H. Accordingly, one can approximate any
arbitrary state by acting on z. Dixmier and Maréchal (1971) demonstrated
that, if there is a cyclic vector for A, then there is a dense set of cyclic vec-
tors for the same algebra. A result by Clifton and Halvorson (2000) connects
cyclicity and entanglement: the global state ¢, generated by z being cyclic
for A is entangled across (A, B). The Rees-Schlieder theorem then guaran-
tees the existence of cyclic vector-states in AQFT. Specifically, it asserts that
a state of bounded energy is cyclic for any local algebra. In particular, it
would be cyclic for A(O,4). It follows, therefore, not only that every state
of bounded energy, such as the vacuum, is entangled across (04, Op), but
also that there is a dense set of entangled global states. This fact is quite
independent from the particular geometry of the spacetime regions and their
degree of spacelike separation. In the last analysis, any pair of spacelike
separated regions are deeply entangled in AQFT.

3 The impossibility in principle of local dis-
entanglement in AQFT

The idea of acting locally on one system is captured in a precise sense by
the notion of local operations, which represent physical operations that an
experimenter could perform on one system. A local operation in A is a
completely positive” map T : AV B — AV B satisfying T(I) < I which
leaves A invariant, in the sense that T(A) belongs to A for any element A
of A. In other words, T'(A) would be a subalgebra of A. The operation is
non-selective if it preserves the unit I; it is selective otherwise. Given the
initial state ¢, the operation-conditioned state resulting from the application
of T is denoted by T*¢. From an algebraic point of view, as T" acts as the
identity on the other algebra B which is assumed to commute with A, its
effect is to select the pair (T'(A), B).

It is a well known result of quantum information theory due to Popescu
and Rohrlich (1997) that it is impossible to create entanglement by perform-
ing local operations. To put it technically, if the global state ¢ is unentangled,

"Recall that the linear map T from a von Neumann algebra C onto itself is completely
positive if it can be extended to a linear map T, : M, (C) — M, (C) which is positive for
every number n (where M, (C) is the set of n by n matrices with elements from C). That
is, T\, maps positive operators to positive operators.



the operation-conditioned state T%¢ will be unentangled too, for any local
operation 7" in A. It means that an experimenter cannot entangle any state
between two quantum systems by acting locally. As a consequence, entan-
glement between algebras cannot be created either. This is a general fact,
which is thus common to both type I and type III factors.

But, one may ask, can entanglement be destroyed by local operations?
And does this mark any difference between ordinary quantum mechanics and
relativistic quantum field theory?

3.1 Generalizing Clifton-Halvorson’s no go result

Clifton and Halvorson (2001) addressed the above questions. Nonetheless,
they do not provide a precise statement of what it takes for entanglement
to be destroyed by local operations. We fill this gap below by defining the
algebraic notion of local disentanglement. Subsequently, we show that their
argument in AQFT lacks generality.

The global state ¢ entangled across (A, B) is said to be disentangled
by the local operation 7" in A just in case the operation-conditioned state
T*¢ is separable. Equivalently, T is a disentangling local operation for ¢.
The following notion captures the idea of destroying entanglement between
algebras.

Local Disentanglement between algebras
A and B can be locally disentangled if and only if there is a local operation
T such that all states ¢ across them are disentangled by 7.

That is, there exists a T such that for all global states ¢ the operation-
conditioned state T*¢ is separable. T is thus a disentangling local operation
for the pair of algebras.

The following is a stronger, and perhaps less interesting, notion.

Strong Local Disentanglement between algebras
A and B can be strongly locally disentangled if and only if for every local
operation 71" all states ¢ across them are disentangled by 7.

That is, all T" are such that for any global state ¢ the operation-conditioned
state T™¢ is separable.

The impossibility of destroying entanglement between algebras by means
of local operations is then defined as the denial of the above statements on
local disentanglement. It would be an impossibility in principle if it is a



consequence of some structural feature of the relevant algebras. One obtains
respectively:

Impossibility of Local Disentanglement between algebras
No local operation T can disentangle all states ¢ across (A, B)

That is, for every T there is some global state ¢ such that the operation-
conditioned state T™¢ is entangled.

Impossibility of Strong Local Disentanglement between algebras
Not all local operations T can disentangle all states ¢ across (A, B)

That is, there is some 7T and there is some global state ¢ such that the
operation-conditioned state 7¢ is entangled.

Let us now reconstruct Clifton-Halvorson’s no go result. They considered
selective local operations in A of the form Tp(-) = P(-)P, with P being a
projection. Recall that a projection P of A is abelian for a non-commutative
von Neumann algebra A just in case the algebra P AP is commutative®. Any
type I factor contains an abelian projection, whereas type III factors do not
contain any. The argument exploits such a structural difference between the
two algebraic configurations. One can show, indeed, that Tp disentangles
A and B if and only if P is an abelian projection for A. The proof goes
as follows. If P is abelian, Tp(A) is a commutative algebra, and hence
by the Raggio-Bacciagaluppi theorem all states across (Tp(.A), B) would be
unentangled. Therefore, for any state initial entangled state ¢, the operation-
conditioned state 75 must be separable. On the other hand, if P is not
abelian, there is at least one entangled state state across (Tp(.A), B), since
both algebras would be non-commutative. Such a state is the image under 7}
of an initial state ¢ on AV B. Since entanglement cannot be created by local
operations, one can infer that ¢ must have been entangled in the first place
too. Therefore, there exists some entangled state across (A, B) that cannot
be disentangled by T7%. For type I factors one can chose P to be abelian, so
that one can always construct a disentangling local operation for any pair of
algebras isomorphic to B(H). The persistence of entanglement between local
algebras under T results, instead, from the lack of any abelian projection
in type III factors. It thus depends on a structural feature of the relevant
algebras of observables and, as such, it would determine an impossibility in
principle of destroying entanglement.

8 Abelian projections correspond to the atoms in the projection lattice of a factor. Their
absence implies the non-existence of pure state on the algebra of observables.
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Clifton and Halvorson then strengthened the conclusion by proving that
there is a dense set of global states across any pair of spacelike separated
regions (O4, Op) which remain entangled under the action of Tp. They also
argued that this would be true for non-selective (pure) projective operations
as well. Yet, as it stands, their result does not extend to all local operations®.
Thus, although it is sufficient to assure the possibility of local disentangle-
ment in non-relativistic quantum mechanics, it is not sufficient to establish
the impossibility of local disentanglement in relativistic quantum field theory.
It only proves the impossibility in principle of strong local disentanglement
between the local algebras of AQFT. There could then be some other local
operation, of a different form, disentangling all states across (O, Op). To
rule out such a possibility one needs to construct a general no go result.

3.2 The persistence of entanglement under local oper-
ations

The first step to generalizing Clifton and Halvorson’s result is to recognize
that the Raggio-Bacciagaluppi theorem provides necessary and sufficient con-
ditions for achieving local disentanglement between algebras. In fact, it guar-
antees that if, and only if, T'(A) or B is commutative then all states across
them are separable. The recipe for local disentanglement thus reads: the
noncommutative algebras A and B can be locally disentangled just in case
the effect of the local operation T is to select a commutative subalgebra of A.
Next, we formulate a conjecture that would capture a structural feature of
type III factors, of which the absence of abelian projections entails a special
case.

Conjecture: It A is a type III factor, then there is no local operation in A
such that T'(A) is commutative.

Applied to AQFT, this means that the subalgebra T(A(O4)) of A(O4) can
never be commutative for 7" being a local operation performed in the region
O4. If Conjecture is true, then we can derive the following no go result,
which demonstrates the impossibility in principle of local disentanglement
between local algebras.

9As a partial remedy, they expressed some reservations on whether arbitrary, rather
than just pure, mixing operations may constitute genuine disentangling maps. Length
constraints prevent us from addressing this point here. Be it as it may, the fact remains
that their result cannot cover the general case.
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General Result: No local operation 7" in 04 can disentangle all states
across (O4, Op).

This completes the generalization of Clifton-Halvorson’s result, thus estab-
lishing the persistence of entanglement under any local operation in the rel-
ativistic context.

Granted that there exists some state ¢ across (O4, Op) which can never
be locally disentangled, one can pose further interesting questions. First,
what are the global states that cannot be disentangled by local operations?
And, second, when can a local operation disentangle some global state?

Based on the above conjecture, we prove a proposition to the effect that
cyclic states would remain entangled under any local operation, which pro-
vides ground for answering the first question.

Proposition: Let A and B be mutually commuting type III factors. If
Conjecture holds, then the global state ¢, generated by a vector-state x
cyclic for B cannot be disentangled by any local operation 7" in A.

Proof. Let us assume, for the sake of reductio ad absurdum, that 7%¢, is not
entangled. By cyclicity one can approximate any state ¢ on T'(A) V B by ap-
plying to T*¢, local operations T given by the elements of B (the existence
of such operations is assured by the Kraus representation theorem). Since
entanglement cannot be created by local operations, all ¢ must be unen-
tangled. Nevertheless, Conjecture assures that T(A) is noncommutative. It
thus follows from the Raggio-Bacciagaluppi theorem that there is at least one
entangled state across these two algebras. Hence, a contradiction is obtained
from the assumption. O

Such a proposition together with the result by Dixmier and Maréchal on the
existence of a dense set of cyclic states imply that T'(A) and B are deeply
entangled. The Rees-Schlieder theorem then gives a sufficient condition for
the following fact to be true in AQFT.

Strong General Result: There is a dense set of states across (Oa, Op)
that cannot be disentangled by any local operation 7" in O 4.

This offers a qualitative characterization of (a large class of) those states
across spacelike separated regions that can never be locally disentangled.
Specifically, all states of bounded energy would remain entangled, no matter
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how one acts locally. Furthermore, by choosing a suitable metric, one may
be able to extend such a claim to the overwhelming majority of global states.

Our Strong General Result has an appealing fall-out for the second ques-
tion concerning local disentanglement of a state too. Indeed, it seems to
pose severe practical difficulties on an experimenter to destroying the entan-
glement of a global state of the field. Even if she manages to disentangle ¢
by performing the local operation 7', it would be very hard for her to dis-
tinguish the resulting state 7*¢ from any of the dense set of global states
which remain entangled. The quandary becomes even made more dramatic
in the absence of any well-defined measure of the degrees of entanglement
in AQFT. Be it as it may, one can give a necessary and sufficient condition
for local disentanglement of some global state in terms of the split property.
That is, a local operation T in O, disentangles some state ¢ across (O4, Op)
if and only if the pair of algebras T(A(O,)) and A(Op) are split. It is still
an open problem to determining under what circumstances this is actually
the case.

We conclude by discussing Clifton and Halvorson’s final remark. Let
O, be an arbitrarily large region of Minkowski spacetime which properly
contains O4. Any local operation T in O, is said to be approximatively
local in O4. One can demonstrate that, if A(O,4) and A(Op) satisfy the
split property, then there exists an approximatively local operation in O4
disentangling all states across the corresponding regions. Such a map can be
constructed by exploiting the type I character of the von Neumann algebra
M splitting the local algebras associated with O, and O4. In particular,
T would be the extension to A(@A) of a projective operation defined by an
abelian projection in M. In the last analysis, disentanglement of one region
from another spacelike separated one would be possible by performing a local
operation in an arbitrarily larger region containing it!°.

So as soon as we allow Alice [an experimenter| to perform approz-
imatively local operations on her field system, she can isolate it
from entanglement with other strictly-separated field systems...
God is subtle, but not malicious. [Clifton-Halvorson (2001), p.29]

Let us stress, though, that such a quasi-local procedure is subjected to some
non-trivial restrictions. The argument goes through just in case Op is con-
tained in the causal complement of @ 4. Whether this condition is fulfilled
depends on the size of the region O, and its degree of spacelike separation
from Op. Furthermore, from a practical point of view, in order to perform

~ 10T be sure, the action of TNWOUId not disentangle @4 from Op! Indeed, while
T(A(O4)) is commutative, T(A(O4)) ought to be noncommutative by Conjecture.
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T the experimenter must be allowed to step out of her original region and,
so to speak, operate in a larger laboratory. It implies, however, that she
would invade the causal complement of O 4. It is not quite obvious, both at
a theoretical and an operative level, whether this may be permissible at all.

4 Conclusion

We showed that entanglement is more robust in relativistic quantum field the-
ory than in ordinary quantum mechanics in two well-defined senses. First,
there are many pairs of local algebras in AQFT that are intrinsically en-
tangled. Second, it is impossible in principle to disentangle two spacelike
separated regions by performing local operations. Under certain conditions
disentanglement could be achieved by means of some approximately local op-
eration. However, this is proven only in the special circumstances in which
the split property holds. God is indeed benevolent, but quite demanding!
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