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Abstract

I provide an algebraic formulation of classical field theories and use this to probe our inter-

pretation of algebraic theories more generally. I show that the problem of unitarily inequivalent

representations, as discussed in Ruetsche (2011), arises in classical theories just as in quan-

tum theories, and I argue that this gives reason to not be a Hilbert Space Conservative when

interpreting algebraic theories.

1 Introduction

Ruetsche (2011) argues that a problem of unitarily inequivalent representations arises in quan-

tum theories with infinitely many degrees of freedom. When one attempts to “quantize” a classical

theory, i.e. formulate a quantum theory for the same system the classical theory was meant to

describe, one is not guaranteed that the resulting quantum theory is unique.1 For a classical theory

with infinitely many degrees of freedom, e.g. a field theory or a statistical theory in the thermody-

namic limit, there are many inequivalent theories which compete to be called its “quantization”.

Work on the problem of unitarily inequivalent representations is done in the algebraic framework

for quantum theories. One begins by representing physical observables as elements of an abstract

C*-algebra, which captures the structure that all of the representations of the canonical commuta-

tion or anti-commutation relations have in common. One then looks for concrete representations of

that algebra in the bounded operators on some Hilbert space. The problem of unitarily inequivalent

1This assumes that a quantum theory is a concrete Hilbert space representation of canonical commutation or
anti-commutation relations. This assumption is not universally shared and we will see later on how it is challenged.

1



1 INTRODUCTION

representations forces us to make a choice in interpreting the algebraic formalism. Either one takes

the algebraic formulation as basic, and becomes an Algebraic Imperialist, or else one privileges a

particular Hilbert space representation as a Hilbert Space Conservative.2

This paper investigates the algebraic formalism itself for the purpose of assessing these inter-

pretive options. I will step back from the specific details of quantum theory, whose understanding

is already so controversial, and shift to the simpler context of classical field theory. As is already

known,3 one can use the very same algebraic formalism previously mentioned to describe classical

theories as well as quantum ones. Since the interpretation of classical field theory is at the very

least better understood and better agreed upon than that of quantum mechanics, this suggests that

we can use classical field theory to probe our understanding of the abstract algebraic formalism.

This paper uses an algebraic reformulation of classical field theory as a concrete case in order to

investigate whether similar interpretive and foundational issues arise in the classical case as in the

quantum case, and whether natural solutions are suggested in the classical case.

There is a tradition in philosophy of physics, specifically in the philosophy of space and time,

of translating our previous theories into the language of our current theories for the purpose of

assessing what precisely is novel about our new theories. For example, many use Newton-Cartan

theory (geometrized Newtonian gravitation) as a way of translating classical Newtonian gravitation

into a framework in which one can compare it with general relativity. Upon doing so, one finds that

at least some of the things that have been said were distinctive features of general relativity turn

out to be features of Newton-Cartan theory as well (see, e.g. Weatherall 2011). The purpose of this

paper is to make a similar point about the relationship between quantum field theory and classical

field theory. While many have argued that the problem of unitarily inequivalent representations is

a conceptual problem for quantum theories with infinitely many degrees of freedom, I will argue

that the mathematical features that lead to this problem are not distinctive of quantum theories.

Furthermore, I will argue that looking at the classical case helps us understand just what the

problem is and how to go about looking for solutions.

2I take this terminology from Ruetsche (2011, Ch. 6), who adapts it from Arageorgis (1995).
3It has for some time now been accepted that abelian algebras may be used to represent the observables of a

classical system (e.g. Summers & Werner 1987, 2441), but it was not until recently that such a formulation was
made explicit (Brunetti et al. 2012).
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I will show that the problem of unitarily inequivalent representations arises in the algebraic

formulation of classical field theories just as it arises in quantum theories.4 More specifically, I will

show that in classical theories, the GNS representations for any two distinct pure states are unitarily

inequivalent. In a certain sense, the problem is even more pressing in the classical case. However,

there is another sense in which it is not a problem at all in the classical case because its solution

is obvious. I will argue that the position of Hilbert Space Conservatism (as extended to classical

field theories) is untenable, so the obvious solution to the problem is to not be a Hilbert Space

Conservative. Furthermore, I will show that the standard argument against Algebraic Imperialism

fails in the classical context. To the extent that this moral concerning the algebraic formalism carries

over from the classical case to the quantum case, one also ought not be a Hilbert Space Conservative

about algebraic quantum theory.5 The mathematical results displayed in my argument are not new,

but their significance seems to have been overlooked. I believe it is worthwhile to present them in

this new light if only because they help us to understand issues that have previously been puzzling

to some of those attempting to understand the algebraic formalism.

2 Preliminaries

2.1 Algebraic Quantum Field Theory

Here we introduce the basic concepts of algebraic quantum field theory.6 One begins with a net

of algebras, which is an association of a unital C*-algebra A(O), called a local algebra of observables,

to each suitable7 open bounded region O of some spacetime M

O 7→ A(O)

4By this, I do not mean to assert that unitarily inequivalent representations in classical theories bear the same
interpretation outlined above. In particular, I do not mean that there is some kind of non-uniqueness in our description
of classical theories or that we have competing versions of classical theories. Rather, I mean that analogous technical
results hold in the classical case that force us to reconsider our interpretive options.

5In this paper I will not examine the arguments against Algebraic Imperialism in the quantum case, which some
might see as arguments in favor of Hilbert Space Conservatism. See Feintzeig (2015) for an examination of those
arguments.

6For more on operator algebras, see Kadison & Ringrose (1997) and Sakai (1971). For more on the algebraic
formalism and axioms of algebraic quantum field theory, see Halvorson (2006) and Ruetsche (2011, ch. 4).

7For example, one might restrict attention to only open double cones (see, e.g. Halvorson 2006, 740)
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This net of C*-algebras bears the following initial interpretation: each self-adjoint element of A(O)

corresponds to a possible local observable, a quantity measurable within O. This net of algebras is

required to satisfy a number of general axioms, including

Isotony: If O1 ⊆ O2, then A(O1) ⊆ A(O2).

Isotony guarantees that the net A(O) has an inductive limit A, called the quasilocal algebra:

A =
⋃

O⊆M

A(O)

A state is a positive, normalized linear functional ω on A. A state ω bears the following initial inter-

pretation: for each self-adjoint A ∈ A, the number ω(A) is the expectation value for a measurement

of the observable corresponding to A in the state ω.

Importantly, this algebraic formalism translates back into the familiar Hilbert space theory once

we are given a state. A representation of a C*-algebra A is a pair (π,H), where π : A → B(H) is

a *-homomorphism into the bounded linear operators on some Hilbert space H. One of the most

fundamental results in the theory of C*-algebras, known as the GNS theorem, asserts that for each

state ω on A, there exists a representation (πω,Hω) of A, known as the GNS representation for ω,

and a (cyclic) vector Ωω ∈ Hω such that for all A ∈ A,

ω(A) = 〈Ωω, πω(A)Ωω〉

One may find representations of A on different Hilbert spaces, and in this case one wants to know

when these can be understood as “the same representation”. This notion of “sameness” is given

by the concept of unitary equivalence:8 two representations (π1,H1) and (π2,H2) are unitarily

equivalent if there is a unitary mapping U : H1 → H2 which intertwines the representations, i.e.

for each A ∈ A,

Uπ1(A) = π2(A)U

8See Ruetsche (2011, Ch. 2.2) and Clifton & Halvorson (2001, Sec. 2.2-2.3) for more on unitary equivalence as a
notion of “sameness of representations.”
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The specified unitary mapping U sets up a way of translating between density operator states on

H1 and density operator states on H2, and between observables in B(H1) and observables in B(H2).

The GNS representation for a state ω is unique in the sense that any other representation (π,H)

of A containing a cyclic vector corresponding to ω is unitarily equivalent to (πω,Hω).

What has been said until now has not depended at all on the structure associated with the

spacetimeM. Now we restrict attention to a spacetime with an affine structure. For our purposes,

this could be either relativistic Minkowski spacetime or classical Newtonian spacetime. All that

matters is that we have an associated vector space G, which can be thought of as the translation

group of that spacetime. To make the algebraic structure of the theory compatible with this affine

structure of the spacetime, one employs a further axiom:9

Translation Covariance: There is a representation x 7→ αx of the translation group

G into the automorphism group of A such that for all O ⊆M

αx(A(O)) = A(O + x)

Translation covariance tells us that translating our algebra via the automorphism αx will get us the

same result as translating our region of spacetime and looking at the algebra associated with the

new region. A vacuum state10 is a state ω0 on the quasilocal algebra A which is invariant under the

translation group, i.e. for each x ∈ G, ω0 ◦ αx = ω0. One often works in a vacuum representation

(πω0
,Hω0

), the GNS representation of A in a chosen vacuum state ω0.

2.2 Algebraic Classical Field Theory

We now apply the concepts and constructions of the algebraic formalism to classical field the-

ories. This is an attempt to translate classical field theory into a framework in which it can be

compared with quantum field theory. We do not claim that the algebraic formalism provides the

9For more on Translation Covariance and translation-invariant states, see Ruetsche (2011, 105-106) and Halvorson
(2006, Sec. 2.2).

10For the purposes of this paper, I take this as a definition of vacuum states. One might insist that translation-
invariance is merely a necessary condition for being a vacuum state. If so, one can simply substitute “translation-
invariant” every time I say “vacuum”.

5



2.2 Algebraic Classical Field Theory 2 PRELIMINARIES

best or most useful way of understanding classical field theory for all purposes, or even that it

captures the full, rich structure of the classical theory. As such, one might worry that the algebraic

setting is artificial in the classical case, and that we might want to interpret the formalism differ-

ently here than in quantum theories. I will have more to say about the differences between the

classical and quantum case below, but for now I note that all I require for my arguments is that

quantum and classical theories share a background of very weak interpretive assumptions—namely,

that observables correspond to quantities that we can measure of our system and states assign

expectation values to those observables.

This weak interpretive background has made the practice of translating classical theories into the

algebraic language common and fruitful among researchers investigating the boundary between the

classical and the quantum. For example, Summers & Werner (1987) prove algebraic results about

the status of the Bell inequalities when classical and quantum systems are coupled, and Landsman

(1998, 2006) reviews techniques for understanding algebraic classical theories as the appropriate

limits of quantum theories, e.g. using deformation quantization. In order for this practice to make

sense, we need to be able to understand classical and quantum theories in a unified framework.

Doing so will give us the tools we need here to compare classical field theory with quantum field

theory and in particular to analyze the significance of unitarily inequivalent representations.

We restrict ourselves for simplicity and concreteness to the algebraic formulation of the classical

theory of a real scalar field11 ϕ :M→ R. Each such smooth field ϕ ∈ C∞(M) represents a possible

configuration of our system. Thus, we take an appropriate subcollection12 U ⊆ C∞(M) (say, of

solutions to some partial differential equation) to be our configuration space. Observables in this

theory will be functions f : U → C (Landsman, 1998, 1). Each such observable f corresponds to

a possible measurable quantity of the system, and f(ϕ) is the value that we would measure if the

11One could generalize by repeating these constructions for smooth sections of an arbitrary vector bundle overM.
12Some technical caveats about “appropriate” configuration spaces: first, we require that U be closed under

translations (see footnote 15). Second, we also would like to put a topology on U so that we can restrict attention
to observables that are continuous fundtions on U (see footnote 14).
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actual field configuration were ϕ. The observables form a C*-algebra with operations defined by

(fg)(ϕ) := f(ϕ) · g(ϕ)

(f + g)(ϕ) := f(ϕ) + g(ϕ)

f∗(ϕ) := f(ϕ)

for all f, g : U → C.13

One may pick out the local observables (which form a C*-algebra with the operations defined

above suitably restricted) to a given region O ⊆ M, and thereby define the net of observables,

according to the following rule:

Definition 1. (Classical Net) An observable f : U → C is in A(O), and said to be local to O, iff

for all ϕ,ϕ′ ∈ U such that ϕ|O = ϕ′|O, we have f(ϕ) = f(ϕ′).

This definition fits with our intuitive understanding of what it means for an observable to be local—

an observable f is local to O just in case the value of f on any field configuration ϕ depends only

on the values ϕ takes within O (or on the boundary of O). The following proposition shows that

one can take the inductive limit of the classical net to obtain the classical quasilocal algebra A.

Proposition 1. The classical net satisfies Isotony, i.e. if O1 ⊆ O2, then A(O1) ⊆ A(O2).

Proof. Suppose O1 ⊆ O2 and choose any f ∈ A(O1). For any ϕ,ϕ′ ∈ U , if ϕ|O2
= ϕ′|O2

, then

ϕ|O1
= ϕ′|O1

, and therefore f(ϕ) = f(ϕ′), which shows that f ∈ A(O2).

One can also define a representation of the translation group αx on A (via an intermediary

group βx acting on U) as follows. For each x ∈ G, define βx : U → U by

βx(ϕ)(p) := ϕ(p+ x)

13If one wishes, one may restrict attention to the continuous functions with respect to some appropriate topology.
For example, one may use the compact-open topology or the Whitney topology (Brunetti et al. 2012). Furthermore,
one must restrict attention to bounded functions so that the supremum norm is well defined everywhere on the
algebra.
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for all ϕ ∈ U and p ∈M.14 Then for each x ∈ G, define αx : A→ A by

αx(f)(ϕ) := f(βx(ϕ))

for all f ∈ A and ϕ ∈ U .

Proposition 2. The classical net satisfies Translation Covariance, i.e. f ∈ A(O) iff

αx(f) ∈ A(O + x).

Proof. Suppose f ∈ A(O). Then given any two ϕ,ϕ′ ∈ U , if ϕ|O+x = ϕ′|O+x
, then for any p ∈ O,

βx(ϕ)(p) = ϕ(p+ x) = ϕ′(p+ x) = βx(ϕ′)(p)

and so βx(ϕ)|O = βx(ϕ′)|O. It follows that

αx(f)(ϕ) = f(βx(ϕ)) = f(βx(ϕ′)) = αx(f)(ϕ′)

which shows that αx(f) ∈ A(O + x). The other direction follows similarly.

Given this representation of the translation group, we can identify vacuum states. Each deter-

minate field configuration ϕ ∈ U defines a state ωϕ on A by

ωϕ(f) := f(ϕ)

for all f ∈ A. If ϕ is a constant determinate field configuration, then it is invariant under the

translation group βx, because for all p ∈ M, βx(ϕ)(p) = ϕ(p + x) = ϕ(p). It follows that ωϕ is

invariant under the translation group αx, because for all f ∈ A,

ωϕ(αx(f)) = αx(f)(ϕ) = f(βx(ϕ)) = f(ϕ) = ωϕ(f)

14For this definition to make sense, we must require that U is closed under translations, i.e. if ϕ ∈ U , then
βx(ϕ) ∈ U .
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Thus any constant determinate field configuration defines a vacuum state on the quasilocal algebra.

One intuitive choice of vacuum state corresponds to the determinate constant field configuration

ϕ0 = 0. Just as in algebraic quantum field theory, once one has chosen a vacuum state by choosing

a constant field configuration ϕ ∈ U , one can work in its corresponding vacuum representation.

We shall investigate the status of this vacuum representation, and the GNS representations for all

states defined by determinate field configurations in the next section.

3 Unitary Inequivalence

3.1 Two Possible Interpretations

Quantizing a classical theory involves two steps: first, one isolates from the observables of the

classical theory certain algebraic relations (usually commutation or anti-commutation relations) and

second, one finds a representation of the resulting algebra in the bounded operators on some Hilbert

space. In the case where the original classical theory has finite degrees of freedom, the Stone-von

Neumann theorem (Ruetsche 2011, 41, Clifton & Halvorson 2001, 427) shows that all of the Hilbert

space representations we end up with are unitarily equivalent and so the resulting quantum theory

is unique.15 However, it is well known that theories with infinite degrees of freedom, including field

theories and statistical theories in the thermodynamic limit, violate the assumptions of the Stone-

von Neumann theorem. Even though the first step of the quantization procedure yields a unique

algebra for the quantum theory, this algebra admits many unitarily inequivalent representations

when we attempt to perform the second step (Ruetsche 2011, Ch. 3.3). Because of this, it appears

that many theories of interest for physics do not have a unique quantization.

Anyone hoping to understand quantum theories of infinite systems, like quantum field theory,

must decide which quantum theory to consider. One has two options to choose from.16 First, one

can be an Algebraic Imperialist by asserting that a quantum theory is given in full by the abstract

15The Stone-von Neumann theorem carries additional assumptions as well. It assumes that the phase space of the
classical theory is symplectic and that the representation is continuous in an appropriate sense.

16For more on these positions and their advantages and disadvantages, see Arageorgis (1995) and Ruetsche (2002,
2003, 2006, 2011 Ch. 6). Of course, as Ruetsche describes, there are many more subtle interpretive options, but we
deal here only with two of the simplest cases. Ruetsche herself holds neither view described here.
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algebra of observables and the states on that algebra rather than its Hilbert space representations.

The abstract algebra captures a structure that all Hilbert space representations have in common,

so the Algebraic Imperialist chooses to focus only on this structure. To do so is to proclaim that

all the work that has been done on interpreting the Hilbert space formalism for ordinary quantum

mechanics with finite degrees of freedom cannot yield a complete and adequate interpretation for

the case of infinite degrees of freedom. According to the Algebraic Imperialist, “the extra structure

one obtains along with a concrete representation of [A] is extraneous.” (Ruetsche 2011, 132). All

that matters is the abstract algebraic structure. The physically measurable quantities are given

by the observables (self-adjoint elements) in A, and the physically possible states are given by the

states on A.

On the other hand, if one wants to be a Hilbert Space Conservative and maintain an interpreta-

tion via the Hilbert space formalism like those usually discussed for ordinary quantum mechanics,

then one must pick a particular Hilbert space representation to interpret. When one is working in

the context of a particular Hilbert space H, one can define the weak operator topology on B(H).

The weak operator topology is defined by the following criterion for convergence (Halvorson 2006,

732, Ruetsche 2011, Ch. 4): a net {Ai}i∈X converges in the weak operator topology to A (written

Ai → A) just in case for all φ, ψ ∈ H,

〈φ,Aiψ〉 → 〈φ,Aψ〉

Recall that the GNS theorem allows us to take any C*-algebra of observables A and, having chosen

some state ω, represent it via the representation πω as a subalgebra πω(A) ⊆ B(Hω) for some

Hilbert space Hω. Using the weak operator topology on B(Hω) as the physically relevant notion

of approximation,17 one can include in any algebra of observables the operators that are physically

indistinguishable from or well approximated by the observables already picked out in our algebra.

17The motivation for this standard practice is that in the weak operator topology, a sequence of observables well
approximates (i.e. converges to) another observable just in case it approximates it with respect to all possible
expectation values and transition probabilities, and hence with respect to the empirical predictions of the theory. I
believe there is room to question already whether this motivation succeeds in justifying the weak operator topology
(Feintzeig 2015), but one need not do so for the argument against Hilbert Space Conservatism that follows.
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3.2 Classical Analogue 3 UNITARY INEQUIVALENCE

To do so, we take the weak operator closure (written πω(A)) of our original algebra of observables

πω(A). If the state ω that we used to take our GNS representation is pure,18 then, because the

representation πω is irreducible,19 it follows that πω(A) = B(Hω) (see Sakai 1971, Prop. 1.21.9,

52). So taking the GNS representation for a pure state and closing in the weak operator topology

brings us back to the familiar situation where our observables are all of the bounded self-adjoint

operators on a Hilbert space.20

For the Hilbert Space Conservative, one such particular Hilbert space representation of the

abstract algebra specifies the physical possibilities. Having chosen a pure state ω on A and obtained

its GNS representation (πω,Hω), the Hilbert Space Conservative follows the standard practice in

ordinary quantum mechanics (for finite degrees of freedom). For the Hilbert Space Conservative, the

physically measurable quantities are the self-adjoint elements of πω(A) = B(Hω), and the physically

possible states are density operators on Hω.

3.2 Classical Analogue

I will show that unitarily inequivalent representations are endemic to classical field theories

(considered prior to any quantization procedure) and that the proper understanding of them pro-

vides an argument against Hilbert Space Conservatism. Here, I do not mean to propose a complete

interpretation of classical field theories or an adequate notion of physical equivalence for them; I

confine myself to displaying technical results about the existence of unitarily inequivalent repre-

sentations and using them to argue against the Hilbert Space Conservative. As we will see, in a

certain sense unitarily inequivalent representations are more problematic for classical field theories

than quantum theories because, while in the quantum case at least the GNS representations for

some pure states are unitarily equivalent, in the classical case the GNS representations of any two

18A state ω is pure if whenever ω = a1ω1 + a2ω2 for states ω1, ω2, it follows that ω1 = ω2 = ω.
19A representation (π,H) of A is irreducible if the only subspaces left invariant under the action of π(A) are {0}

and H.
20There is another interpretive stance that one might take if one wanted to use the tools of Hilbert space theory for

physics. One might allow for reducible representations and then use either the universal representation or the reduced
atomic representation of the algebra, both of which are formed by taking direct products of GNS representations
(see Kadison & Ringrose 1997, p. 281). These representations lead to a position along the lines of what Ruetsche
calls Universalism (Ruetsche 2011, p. 145). In this paper, I will deal only with the Hilbert Space Conservative that
is committed to irreducible representations; see Feintzeig (2015) for a discussion of Universalism.
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3.2 Classical Analogue 3 UNITARY INEQUIVALENCE

distinct pure states are always unitarily inequivalent. This section assumes the setting of classical

field theories set out in section 2.2.

Proposition 3. Let ϕ ∈ U be a field configuration. Then the corresponding state ωϕ (defined in

section 2.2) is pure.

Proof. The state ωϕ is multiplicative: if f, g ∈ A, then

ωϕ(fg) = (fg)(ϕ) = f(ϕ) · g(ϕ) = ωϕ(f) · ωϕ(g)

It follows immediately that ωϕ is a pure state (Kadison & Ringrose 1997, 269, Thm. 4.4.1).

In particular, any vacuum state corresponding to a constant determinate field configuration is

pure. The rest of the argument follows merely from the fact that the quasilocal algebra A is abelian.

Proposition 4. Let A be an abelian C*-algebra. Let ω be a pure state on A and let (πω,Hω) be

the GNS representation of A for ω. Then Hω is one dimensional.

Proof. Because ω is pure, the GNS representation (πω,Hω) for the state ω is irreducible (Kadison

& Ringrose 1997, 728, Thm. 10.2.3). Since A is abelian, any irreducible representation of A is on

a one-dimensional Hilbert space (Kadison & Ringrose 1997, 744).

This means that the GNS representation for any pure state, and thus for the state corresponding

to any determinate field configuration, is so weak that it has the power to represent only a single

state as a density operator.

Proposition 5. Let ω1 and ω2 be distinct pure states on an abelian C*-algebra A. Let (πω1
,Hω1

)

and (πω2
,Hω2

) be the GNS representations of A for the states ω1 and ω2 with corresponding cyclic

vectors Ωω1 and Ωω2 , respectively. Then (πω1 ,Hω1) and (πω2 ,Hω2) are unitarily inequivalent.

Proof. (See Kadison & Ringrose 1997, 744) Suppose there is a unitary transformation U : H1 → H2

such that for all A ∈ A,

Uπω1
(A) = πω2

(A)U
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3.2 Classical Analogue 3 UNITARY INEQUIVALENCE

Then since the Hilbert spaces are one-dimensional, it follows that UΩω1 = eiθΩω2 for some θ ∈ R.

So for all A ∈ A

ω1(A) = 〈Ωω1
, πω1

(A)Ωω1
〉 = 〈Ωω1

, U−1πω2
(A)UΩω1

〉

= 〈UΩω1
, πω2

(A)eiθΩω2
〉

= 〈eiθΩω2
, eiθπω2

(A)Ωω2
〉

= e−iθeiθ〈Ωω2
, πω2

(A)Ωω2
〉 = 〈Ωω2

, πω2
(A)Ωω2

〉 = ω2(A)

Therefore, ω1 = ω2.

Thus, if determinate field configurations ϕ,ϕ′ ∈ U determine distinct states ωϕ and ωϕ′ , then,

since the quasilocal algebra A of any classical field theory is abelian, the corresponding GNS repre-

sentations for ωϕ and ωϕ′ will be unitarily inequivalent. In particular, the vacuum representation

mentioned above for the vacuum state determined by the constant zero field configuration is unitar-

ily inequivalent to the GNS representation for any distinct state. This is, in a certain sense, worse

than the quantum case because while in quantum field theory a representation may include many

states as density operators, in the classical case, each representation includes only a single state.

In another sense, however, unitarily inequivalent representations are less problematic because

we have no prior reason to regard them as rival theories. One might think it was never a good idea

to look for Hilbert space representations of classical theories in the first place. We will examine the

differences between the classical and the quantum case in the next section, but first we will look in

more detail to see why these unitarily inequivalent representations arise in the classical case.

The quasilocal algebra A, since it is abelian, is *-isomorphic to C(P(A)), the continuous functions

on the compact Hausdorff space P(A) of pure states of A with the weak*-topology (Kadison &

Ringrose 1997, 270, Thm 4.4.3). (Recall that each determinate field configuration defines one of

these pure states.) As such, each observable f ∈ A corresponds to a function f̂ ∈ C(P(A)) defined

by

f̂(ω) = ω(f)
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for each pure state ω ∈ P(A). Taking the GNS representation for a pure state ω amounts to

choosing a measure on the space P(A) (See Kadison & Ringrose 1997, 744; Landsman 1998, 55),

which defines an (L2) inner product, hence constructing a Hilbert space as follows. By the Riesz-

Markov theorem (Reed & Simon 1980, 107, Thm. IV.14), each pure state ω on A corresponds to a

unique regular Borel measure µω on P(A) such that for all f ∈ A

ω(f) =

∫
P(A)

f̂dµω

The GNS representation of A for the pure state ω is unitarily equivalent to the representation21

(πω,Hω) on the Hilbert space Hω = L2(P(A), dµω), with πω defined by

πω : f 7→Mf̂

where the operator Mf̂ is defined as multiplication by the function f̂ , i.e. for any ψ ∈ Hω,

Mf̂ψ = f̂ · ψ

Furthermore, when ω is pure,

ω(f) = f̂(ω) =

∫
P(A)

f̂ δ(ω)

where δ(ω) is the point mass or delta function centered on ω. It follows by the uniqueness clause

of the Riesz-Markov theorem that dµω = δ(ω). Now every vector ψ ∈ Hω is defined by a single

complex number—the value of ψ on ω ∈ P(A)—which shows that Hω is one-dimensional (Prop. 4).

Each observable f ∈ A is represented on this Hilbert space via πω as the value that f̂ takes at ω, i.e.

the complex number f̂(ω) = ω(f). Notice that the representation πω will in general not be faithful,

i.e. not one-to-one, because multiple observables may be assigned the same expectation value by

the state ω. Choosing a distinct pure state with which to take the GNS representation amounts to

21Here, the relevant cyclic vector Ωω is the constant unit function.
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choosing a distinct measure on P(A), which means that some observable will be represented as a

different complex number, and hence the representations will be unitarily inequivalent (Prop. 5).

I believe these propositions yield a straightforward argument against the Hilbert Space Con-

servative in the classical case. The argument begins from a single, extremely weak premise: every

classical field theory admits multiple distinct solutions to its governing equations of motion, yield-

ing multiple possible determinate field configurations and hence, multiple distinct states. Each

GNS representation for a pure state on A, because it is one-dimensional, has only the resources to

represent a single state as a density operator; any other state can only be represented as a density

operator on the Hilbert space of a unitarily inequivalent (irreducible) representation of the algebra.

By focusing only on one particular representation, the Hilbert Space Conservative would have to

deny the existence of multiple distinct states, which is absurd.

We see that the problem for the Hilbert Space Conservative is that they do not have access to

resources powerful enough to represent all of the states that are physically possible or physically

significant, and the classical case illustrates this emphatically. The Algebraic Imperialist, on the

other hand, always has access to all of the states on the algebra. The obvious solution to the

problem of unitarily inequivalent representations for the classical case is to not limit oneself to a

particular irreducible representation, because no representation will suffice for representing more

than a single state.

It is worth noting the broader significance of unitarily inequivalent representations in the classical

case beyond the Conservative-Imperialist debate; this will help us to understand the role that a

representation is playing in the theory. Whenever two states give rise to unitarily inequivalent

irreducible GNS representations, one says that there is a superselection rule between those two

states (see Earman 2008). One way of explaining the physical significance of this statement is

that when there exists a superselection rule between two states, they cannot be coherently formed

into a superposition. For example, there is a superselection rule in quantum mechanics between

states with integer and half-integer angular momentum. In the classical case, the fact that the GNS

representations of any distinct pure states are unitarily inequivalent implies that, in the same sense,

there is a superselection rule between any distinct pure states. This corresponds to the fact that
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3.3 Are quantum theories different? 3 UNITARY INEQUIVALENCE

classical physics does not allow for coherent superpositions, or in other words that superposition is

a strictly quantum phenomenon (Landsman 1991, 5354).22 The above propositions show a sense

in which one can derive this fact—that classical and quantum physics differ in allowing coherent

superpositions—from the basic structure of the relevant algebras of observables.

The classical case helps us to see that a representation is a tool that focuses in on some particular

states while ignoring others. Namely, a representation focuses in on a set of states that can be formed

into coherent superpositions. In the quantum case, because there are nontrivial superpositions, we

end up with representations on a nontrivial Hilbert space; but in the classical case, because there

are no superpositions, taking a representation focuses us on only a single state. Since in both cases

representations are giving us physical information about when superpositions can be formed, this

gives us reason to believe that representations have a similar physical significance in the classical

and the quantum case—it just so happens that classical states behave differently than quantum

ones in that they cannot be formed into superpositions. The above results then show that we

should not think of a representation as a full theory as the Hilbert Space Conservative would have

us do. Rather, we should think of a representation as some part of the theory containing only a

subcollection of all of the states the theory deems possible—namely, a subcollection of states that

can be coherently superposed with each other.

3.3 Are quantum theories different?

Even if Conservativism is untenable in the classical case, one might still contend that the quan-

tum case is sufficiently different that Conservatism is tenable there. For example, one might point

to the fact that the algebras of observables used in quantum theories are typically simple, i.e. they

have no non-trivial two-sided ideals.23 This implies that every irreducible representation of the

algebra is faithful, which is in stark contrast to the classical case in which (as we saw above) every

irreducible representation fails to be faithful because the Hilbert space is one-dimensional. Hence,

one might contend that even if my argument is sound in the classical case, the quantum case is

22Superselection sectors are also sometimes thought to have some extra dynamical significance. In the classical
case, unitarily inequivalent representations are only significant for the notion of superposition and not for dynamics.

23A two-sided ideal is a subalgebra I ⊆ A such that for all A ∈ I and B ∈ A, we have AB ∈ I and BA ∈ I.
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3.3 Are quantum theories different? 3 UNITARY INEQUIVALENCE

different enough that the argument will not apply.

The quantum case is certainly different in many respects, but (as mentioned in section 2.2) we

have reason to want to understand classical and quantum theories as being part of a unified frame-

work, as many of the practitioners of the theory do (Summers & Werner 1997; Landsman 2006).

Insofar as we understand algebraic classical and quantum theories to fit into this unified frame-

work with at least some basic shared interpretive assumptions, we can ask about the significance

of certain mathematical operations that we can perform on both theories.

One might worry that the algebraic framework is not unified enough to allow for this kind of

analysis. The pointwise multiplication operation of the classical algebra of observables leaves out

much of the information encoded in the classical theory—specifically the dynamical information,

which may be encoded (for example) in a Poisson bracket defined on the relevant phase space. On

the other hand, in the quantum algebra, the noncommutative multiplication operation might be

understood as encoding dynamical information because the Poisson bracket plays a fundamental

role in defining the canonical commutation relations of the quantum theory. I think this is a real

difference between the physical significance of the classical and quantum algebras, but it does not

change the status of the arguments given in this paper. Here we have considered the unified algebraic

framework only as a tool for representing the possible states and observables of the theory, without

any consideration of the dynamics. This is all the information we need to answer questions that

others have posed about physical equivalence and translatability between different representations

(Clifton & Halvorson 2001; Ruetsche 2011; Baker 2011). The objection that classical multiplication

does not contain dynamical information is irrelevant because none of the arguments here depend

on dynamics at all.

Given that quantum and classical theories do fit into a unified framework, and given that this

framework suffices for many scientific purposes, the analysis of the classical case at least shifts the

burden of proof and leads one to question the Conservative’s position. I believe it is absolutely

obvious that in the classical case the Hilbert Space Conservative does not have access to enough

states. This puts a burden on the Conservative even in the quantum case to show that she can

represent enough states.
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But when the Hilbert Space Conservative about quantum theories faces this question, we find

that (regardless of the differences between the classical and the quantum) she cannot represent

enough states in the quantum case. This claim is not new; Ruetsche (2002, 364; 2003, 1338; 2006,

480) argues at length for this conclusion, as follows. The GNS representations of certain physically

significant pure states in quantum field theory and quantum statistical mechanics are unitarily

inequivalent. For example, the GNS representations of states corresponding to different pure ther-

modynamic phases are unitarily inequivalent. This implies that neither of the Hilbert spaces of

the individual representations can represent the other state as a density operator, and so neither

Hilbert space can represent the other state as a physical possibility. A Hilbert Space Conserva-

tive, having chosen one particular pure state through which to consider the GNS representation,

must deny that states which cannot be represented on the Hilbert space of that representation are

physically possible. So, for example, a Hilbert Space Conservative can never judge different pure

thermodynamic phases to be physically possible and hence can never give an explanation of phase

transitions, which would require the coexistence of distinct phases (see Ruetsche 2002, 2003). The

Hilbert Space Conservative cannot recover these physically significant explanations precisely be-

cause she cannot countenance all of the physically relevant states. As we have seen, this is exactly

the same feature that leads to the downfall of Hilbert Space Conservatism in the classical case.

4 Conclusion

We have seen that classical theories can be formulated in the algebraic framework, and when we

do so we find that the GNS representations of any two distinct pure states are unitarily inequivalent.

The Hilbert Space Conservative uses only one of these GNS representations so she can only represent

a single state as physically possible. Since all classical theories contain more than one state, this

implies that the Hilbert Space Conservative cannot represent all possible states of the theory. This

argument is exactly analogous to ones that Ruetsche gives in the quantum case (Ruetsche 2002,

2003, 2006, 2011), and I believe my arguments only bolster her conclusion. This is important

because even though the arguments in the quantum case are well known, some (Baker 2011; Baker
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& Halvorson 2013) continue to discuss Conservatism as if it were a viable option. Here, I hope to

have shown, by consideration of the classical case, that Ruetsche’s arguments against Hilbert Space

Conservatism are already strong enough to defeat that position. Her arguments really do show, as

is evident from the analogous argument in the classical case, that the Hilbert Space Conservative

fails to represent all physically significant states, and it follows that Conservatism is untenable.

Even though I claim this argument rules out Hilbert Space Conservatism, it does not immediately

lead one to Algebraic Imperialism. Ruetsche provides an important argument against Algebraic

Imperialism, which leads her to an alternative “adulterated interpretation” (Ruetsche 2011). I will

show briefly that this argument against Algebraic Imperialism does not apply in the classical case.

Ruetsche asserts that the Algebraic Imperialist does not have the resources to represent all of

the physically possible observables. The Hilbert Space Conservative, having privileged some pure

state ω and its GNS representation (πω,Hω), acquires all of the observables (which Ruetsche terms

parochial observables) in πω(A) = B(Hω). Many of these observables have real physical import (e.g.,

the temperature observable) but have no analogue in the abstract algebra. So the Hilbert Space

Conservative gains access to more observables than the Algebraic Imperialist. These observables are

physically significant, e.g. for giving explanations of thermodynamic phase transitions. According

to Ruetsche, the Algebraic Imperialist runs into a problem because she cannot recognize these

operators as physically possible observables, and so cannot vindicate such explanations.

However, the argument against Algebraic Imperialism does not apply in the classical case. In

the classical case, no such parochial observables appear in the GNS representation of any pure

state. Since the GNS representation (πω,Hω) for any pure state ω is one-dimensional, and since

πω(A) contains the identity operator and is closed under scalar multiplication by complex numbers,

it follows that πω(A) = B(Hω), and so the representation exhausts the possible observables on Hω.

In this case, πω(A) = πω(A), which means that there are no parochial observables. In other words

every observable the Hilbert Space Conservative recognizes has an analogue in the abstract algebra,

so the Algebraic Imperialist recognizes that observable too.24

The road is now paved to be an Algebraic Imperialist in the classical case. I believe that these

24Admittedly, this argument works only for the classical case. See Feintzeig (2015) for a general solution.
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arguments help us understand the algebraic formalism more generally and that they push us toward

Algebraic Imperialism in the quantum case as well. At the very least, the failure of Hilbert Space

Conservatism that we’ve seen in this paper should force us to reconsider Algebraic Imperialism in

the quantum case.
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