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Abstract

The paper investigates the relations between Hausdorff and non-
Hausdorff manifolds as objects of General Relativity. We show that
every non-Hausdorff manifold can be seen as a result of gluing together
some Hausdorff manifolds. In the light of this result, we investigate a
modal interpretation of a non-Hausdorff differential manifold, accord-
ing to which it represents a bundle of alternative spacetimes, all of
which are compatible with a given initial data set.

1 Introduction

The topic of this paper is a dialectic between Hausdorff differential
manifolds and non-Hausdorff differential manifolds as objects of Gen-
eral Relativity (GR): the former assume the so-called Hausdorff topo-
logical separation condition (which frequently is taken as part of the
definition of differential manifolds), whereas the latter assume that
this condition is violated. Both varieties thus form a sub-species of
generalized differential manifolds. Our interest is restricted to these
two varieties as they are used in GR or the philosophy thereof and is
motivated by three observations: (i) As a matter of fact, in GR one
finds constructions of non-Hausdorff differential manifolds, despite the
almost universally accepted assumption that GR spacetimes are Haus-
dorff manifolds.1 (ii) In the 1970s, these constructions prompted a
wave of research into whether GR space-times can be identified with
a generalized differential manifold rather than a Hausdorff one. The
initial optimism cooled, as testified by Penrose’s “back to sanity” con-
fession: “I must ... return firmly to sanity by repeating to myself three

1 By saying that one finds non-Hausdorff manifolds in GR, or that they occur in GR,
we mean that these objects have been investigated in the standard literature on GR. We
do not investigate here the reasons for assuming the Hausdorff condition in GR, or the
arguments to the contrary that non-Hausdorff manifolds make sense in General Relativity.
For a relevant paper, see Luc (2018).
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times: spacetime is a Hausdorff differentiable manifold; spacetime is a
Hausdorff . . . ” Penrose (1979). (iii) Finally, the issue of Hausdorffness
vs. non-Hausdorffness also pops up in attempts by branching space-
time theories to model local possibilities occurring in a spatiotemporal
world, initiated by Belnap (1992). The non-Hausdorffness of the pro-
posed modalo-spatio-temporal structures is viewed as a flaw in them
(cf. Earman (2008)).

These observations prompt two queries that our paper will address:
(1) How are Hausdorff manifolds and non-Hausdorff manifolds related?
(2) How are non-Hausdorff manifolds that occur in GR to be inter-
preted? We opt for a view according to which a non-Hausdorff man-
ifold is a modal representation that captures a bundle of alternative
possible space-times; the advantage of this understanding is that it
disarms most objections to the use of non-Hausdorff manifolds in GR.
There is, however, a certain oddity in interpreting non-Hausdorff mani-
folds as a family of alternative spatio-temporal scenarios evolving from
a given region. A failure of the Hausdorff condition does not entail the
existence of bifurcating trajectories, although it permits it. Bifurcat-
ing trajectories is what one expects if one thinks of indeterminism as
happening locally, i.e. as produced by small objects that are possibly
developing in one way or another in some restricted spatio-temporal
regions. It turns out, however, that the modal interpretation of non-
Hausdorff manifolds suggests an additional constraint on the gluing
technique by which they are constructed; this additional constraint
prohibits bifurcating trajectories, and hence eliminates precisely those
constructions that would otherwise represent locally indeterministic
scenarios.

The paper is organized as follows. In Section 2, after recalling the
necessary definitions, we introduce the gluing technique and show that
it produces a non-Hausdorff topological manifold from Hausdorff dif-
ferential manifolds. Section 3 relates to the non-Hausdorff manifolds
considered in physics: it describes in detail how a non-Hausdorff exten-
sion of non-isometric Taub-NUT spacetimes is produced by a gluing
procedure. Section 4 contains two theorems that relate these species
of differential manifolds to each other: all non-Hausdorff differential
manifolds can be decomposed (in some precise sense) into maximal
Hausdorff sub-manifolds, and all non-Hausdorff manifolds can be pro-
duced by gluing together a family of Hausdorff differential manifolds.
These results form the backbone of a modal reading of non-Hausdorff
manifolds. In Section 5 we discuss Háj́ıc̆ek’s necessary and sufficient
conditions for the existence of bifurcating curves in non-Hausdorff man-
ifolds. We conclude the paper in Section 6.
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2 Gluing introduced

Let us begin by introducing three villains of the peace: generalized,
Hausdorff, and non-Hausdorff differential manifolds:

Definition 1 (manifolds: generalized, Hausdorff, non-Hausdorff). A
collection of pairs {〈uγ , φγ〉}γ∈Γ (where Γ is an index set), with each
uγ ⊆ M for a set M , is a Cr n-atlas on M if uγ ’s cover M , each φγ
is a bijection between uγ and an open subset of <n, and for any two
〈uγ , φγ〉 and 〈uτ , φτ 〉, if uγτ := uγ ∩ uτ 6= ∅, then φγ [uγτ ] and φτ [uγτ ]
are open subsets of <n and composite functions φγ ◦ φ−1

τ and φτ ◦ φ−1
γ

are Cr on their domains.
A pair 〈M,A〉, where M is a non-empty set and A a maximal Cr n-
atlas on M , is a Cr n-dimensional generalized differential manifold.
If a Cr n-dimensional generalized differential manifold satisfies the
condition that for any distinct p, q ∈M there are 〈uγ , φγ〉, 〈uτφτ 〉 ∈ A
such that p ∈ uγ , q ∈ uτ and uγ ∩ uτ = ∅, then it is called a Cr

n-dimensional Hausdorff differential manifold.2

If a Cr n-dimensional generalized differential manifold does not satisfy
the above condition, it is called a Cr n-dimensional non-Hausdorff
differential manifold.

Elements of an atlas are called charts. Whenever confusion is unlikely,
we omit the qualifications “Cr, n-dimensional, differential”, and just
write “generalized” (or Hausdorff or non-Hausdorff) d-manifold, with
“d” for “differential”. If r = 0, i.e., composite maps are merely contin-
uous, a Cr d-manifold collapses into a topological manifold. Note that
by definition, both topological manifolds and d-manifolds are locally
Euclidean, i.e., for every x ∈ M there is u ⊆ M,x ∈ u and a bijection
φ between u and an open subset of <n.

We describe now the gluing technique which can be used to produce
non-Hausdorff d-manifolds. We will later (in Theorem 3) see that
that this technique provides a universal method of constructing non-
Hausdorff d-manifolds out of Hausdorff d-manifolds by gluing the latter
appropriately. Then we will illustrate it by applying it to a real physics
example: a non-Hausdorff extension of the so-called Taub space. We
begin with these definitions:

Definition 2 (gluing function). Let W1 = 〈W1, AW1
, g1〉 and W2 =

〈W2, AW2
, g2〉 be d-manifolds. Then φ : U12 7→ U21, where U12 ⊆

W1, U21 ⊆W2 is a gluing map if

• U12 is open,

2Since an atlas induces a topology T on set M by the condition O ∈ T iff ∀x ∈ O, there
is chart 〈uγ , φγ〉 in the atlas such that x ∈ uγ ; an equivalent way of defining Hausdorff
manifolds is to say that the induced topology is Hausdorff.
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• φ is an isometry.

Clearly, the definition implies that U21 is open as well.

Definition 3 (gluing d-manifolds together). A Cr n-dim generalized
d-manifold 〈W,AW , g〉 is a result of gluing together a family of Cr n-
dim Hausdorff differential d-manifolds {〈Wµ, AWµ

, gµ〉}µ∈Γ (where Γ
is an index set of an arbitrary cardinality) iff

1. there exists a family of gluing functions

{φµν ∈ Uµν 7→ Uνµ | Uµν ⊆Wµ, Uνµ ⊆Wν , µ, ν ∈ Γ};

2. the relation R(x, y), as defined below, is an equivalence relation
on
⋃
µ∈ΓWµ

R(x, y)⇔

{
x = y or

∃µ, ν ∈ Γ[x ∈ Uµν ∧ y ∈ Uνµ ∧ y = φµν(x)];

3. W is the set of representatives of the quotient structure
⋃
µ∈ΓWµ/R;

4. the topology T induced on W by atlas AW is the coarsest-grained
topology on W that satisfies the condition:

O ∈ Tµ ⇒ fµ[O] ∈ T , (1)

where Tµ is the topology induced on Wµ by atlas AWµ
and

W̃µ = {p ∈W | ∃XX ∈ (
⋃
νWν) /R ∧X ∩Wµ 6= ∅ ∧ p ∈ X} and

fµ : Wµ 7→ W̃µ s.t. fµ(p) = q, where R(p, q);

5. The metric g and metrics gµ agree in the sense that g(p) = gµ(q)
for any p ∈ W , q ∈ Wµ such that ∃XX ∈ (

⋃
νWν) /R ∧ p ∈

X ∧ q ∈ X.

To comment on clause 1, it says that for any pair of d-manifolds,
〈Wµ, Aµ, gµ〉 and 〈Wν , Aν , gν〉, there are subsets Uµν ⊆Wµ and Uνµ ⊆
Wν that are identified by a gluing function. Clause 2 defines relation
R(x, y) and postulates it to be an equivalence relation on

⋃
µ∈ΓWµ. We

may require instead that (i) for each map φµν there is a map φνµ = φ−1
µν

and (ii) for any two maps φµν : Uµν → Uνµ, φνη : Uνη → Uην , if
Uνµ ∩ Uνη := Uνµη 6= ∅, then there is a third map φµη : Uµη →
Uηµ, with Uµη = φνµ[Uνµη] ⊆ Uµν and Uηµ = φνη[Uνµη] ⊆ Uην , such
that for any x ∈ Uµη: φνη(φµν(x)) = φµη(x). Thus, clause 2 can be
understood as stating a consistency condition on a family of maps,
their domains and counter-domains. Clause 3 requires one to produce
a set of representatives of the quotient structure. This move might look
superfluous, but it is needed later in Theorem 3, in which we prove that
by gluing the maximal Hausdorff submanifolds of a given manifold one

4



obtains exactly the initial manifold, and not a structurally identical
manifold with points replaced by sets of points. Observe here that if a
point x belongs to

⋃
µ∈Γ(Wµ \

⋃
η∈Γ Uµη), it gives rise to the singleton

of x, {x} in the quotient structure, so taking a representative is trivial.
Yet, a class in the quotient structure can be infinite, so one may need
the axiom of choice to secure a representative of that class in clause
(3). In clause (4) W̃µ consists of counterparts of elements of Wµ in W

and fµ is then a bijection between W̃µ and Wµ. As for clause (5), even
if p is associated with many q’s from different Wµ’s, since such q’s are
connected by the isometry, the metric at all these points is the same,
and hence the definition of g is consistent.

Observe that the definition 3 does not require any specific relation
between atlas A and atlases Aµ, apart from the relation between the
topologies that these atlases induce (which is the topic of clause (4)).
This reflects the role the atlases play: they induce topologies and pro-
duce a differential structure, but for the physical content of the model
it is irrelevant what specific functions these charts contain.

Before we proceed, we prove two facts that are pertinent to the
definition above:

Fact 1. Let d-manifold 〈W,AW , g〉 be a result of gluing together a
family of d-manifolds {〈Wµ, AWµ , gµ〉}µ∈Γ, with T and Tµ (µ ∈ Γ)
being the topologies on W and Wµ, resp. Then

O ∈ T ⇒ ∀µ∈Γf
−1
µ [O ∩ W̃µ] ∈ Tµ. (2)

Proof. Let’s assume that the premise of this fact is true and O ∈
T . Pick an arbitrary µ ∈ Γ. Since Wµ ∈ Tµ, W̃µ ∈ T by Eq. 1

and hence O ∩ W̃µ ∈ T . Since T is the coarsest-grained topology

on W satisfying Eq. 1, O ∩ W̃µ must be the union of some Ok ∈ T
such that f−1

µ [Ok] ∈ Tµ, and hence
⋃
k f
−1
µ [Ok] ∈ Tµ. We also get

these identities:
⋃
k f
−1
µ [Ok] = f−1

µ [
⋃
k Ok] = f−1

µ [O ∩ W̃µ].3 Thus

f−1
µ [O ∩ W̃µ] ∈ Tµ. Since this argument goes through for an arbitrary
µ ∈ Γ, the right-hand side of the implication above follows.

As an immediate consequence of this fact and Eq. 1, we have the
following:

Fact 2. fµ : Wµ → W̃µ is a homeomorphism.

Proof. Plug in Wµ in Eq. 1 and W̃µ in Eq. 2.

At this junction we know what it means that a generalized d-
manifold results from gluing together a family of Hausdorff differential

3To justify these identities, x ∈
⋃
k f
−1
µ [Ok]⇔ x ∈ f−1

µ [On] for some n ⇔ fµ(x) ∈ On
for some n ⇔ fµ(x) ∈

⋃
k Ok ⇔x ∈ f

−1
µ [

⋃
k Ok].
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d-manifolds. We do not know yet, however, whether there are instances
of this definition, i.e., whether there is a generalized d-manifold and a
family of Hausdorff d-manifolds that are related in the way the defini-
tion above prescribes. We argue now that Definition 3 has instances by
proving first that the product of the gluing construction is a generalized
C0 d-manifold, i.e., a generalized topological manifold.

Theorem 1. Let {〈Wµ, AWµ , gµ〉}µ∈Γ be a family (of an arbitrary car-
dinality) of Cr n-dim Hausdorff d-manifolds. Then the product of the
gluing procedure, 〈W,A, g〉 is a C0 n-dim generalized d-manifold (aka
generalized topological manifold). Further, if for each µ ∈ Γ the topol-
ogy Tµ that Aµ induces on Wµ is connected, the topology T on W is
connected as well.

Proof. To prove local Euclidicity, we need to check that any p ∈ W
has an open neighborhood that is mapped onto an open subset of <n.
Let’s thus take an arbitrary p ∈ W . There is then some µ ∈ Γ such
that f−1

µ (p) = p′ ∈ Wµ. Accordingly, there is 〈u′, φ′〉 ∈ Aµ such that
p′ ∈ u′. Hence p ∈ fµ(u′) := u and u ∈ T since u′ ∈ Tµ. Since

φ′ : u′ → A ∈ T<n and f−1
µ : W̃µ → Wµ are bijections, a sought-for

bijection is the composition φ′ ◦ f−1
µ .

As for C0, we need to prove that composite maps ψ◦f−1
η (φ′◦f−1

µ )−1 are
C0, with 〈ψ, u〉 ∈ Aη and 〈φ′, u′〉 ∈ Aµ. Since by the construction each
ψ, φ′, fµ, and fη is a homeomorphism, the composition is a continuous
function. Finally, we argue that T is connected– if every component
topology Tµ is connected. For reductio, let us assume that there is
A ∈ T , A 6= ∅, A 6= W , such that W \A ∈ T as well. By Eq. 2 we get (i)
∀µ∈Γf

−1
µ [A∩W̃µ] ∈ Tµ and (ii) ∀µ∈Γf

−1
µ [(W \A)∩W̃µ] ∈ Tµ. It requires

only an easy calculation to see that for each µ, one is the complement
of the other, i.e., (iii) f−1

µ [A ∩ W̃µ] ∪ f−1
µ [(W \ A) ∩ W̃µ] = Wµ and

f−1
µ [A ∩ W̃µ] ∩ f−1

µ [(W \ A) ∩ W̃µ] = ∅. It is also (iv) impossible that

f−1
µ [A ∩ W̃µ] = Wµ = f−1

µ [(W \ A) ∩ W̃µ] since this implies W̃µ ⊆ A

and W̃µ ⊆W \A. But then (i), (ii), (iii), and (iv) entails that for every
µ ∈ Γ, Tµ is not connected, contrary to the Fact’s assumption.

Observe that with the above theorem we arrived at a C0 n-dim non-
Hausdorff d-manifold, i.e., an n-dim non-Hausdorff topological man-
ifold. To obtain a Cr (r > 0) d-manifold, with its atlas resulting
from atlases of component manifolds, compositions ψ◦f−1

η (φ′ ◦f−1
µ )−1

should be Cr continuous, but they do not need to be so if µ 6= η.4

This means that to produce a Cr (r > 0) d-manifold, an additional
job is needed that consists in appropriately smoothing the maps φ and
φ′ that belong to charts from different atlases. There are limitations

4But clearly, if µ = η, we immediately get Cr (r > 0) continuity since f−1
m ◦ fm = id

and ψ ◦ (φ′−1) is Cr, as these two functions belong to charts from the same atlas.
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to this procedure as there are topological manifolds that do not admit
a Cr (r > 0)-structure, as was proved by Kervaire (1960). However,
it is not clear if such troublesome topological manifolds can be con-
structed by our gluing procedure, which operates on a Cr d-manifold.
In any case, barring Kervaire’s cases, the introduction of the required
differentiability structure is possible, which suffices to ensure that our
Definition 3 is not empty. Besides, the problem with Cr continuity will
not arise in our main theorem about the construction of non-Hausdorff
d-manifolds from families of Hausdorff d-manifolds, as it selects par-
ticular families of Hausdorff d-manifolds.

3 Gluing in action

One may wonder in what contexts non-Hausdorff d-manifolds appear
in GR literature, and whether such manifolds are constructible by
the gluing technique. A typical context for the occurrence of a non-
Hausdorff d-manifold is a failure of the well-posedness of the initial
value problem: if Einstein’s Field Equations (EFE) admit multiple
solutions, these solutions can be glued together, the results being a
non-Hausdorff d-manifold with a metric that still satisfies EFE. In
this spirit Hawking and Ellis (1973) sketched the construction of non-
Hausdorff d-manifolds that are extensions of Misner spacetime and the
Taub spacetime.

As it is far from clear that these constructions are equivalent to our
gluing technique, we now describe a non-Hausdorff d-manifold obtained
by gluing together extensions of the Taub spacetime. An analogous
technique can be used to produce more realistic general-relativistic ex-
amples, like pasting together extensions of Gowdy polarized spacetime
(see e.g. Chruściel and Isenberg (1991)).

The Taub spacetime is given by set M = (t−, t+)×S3, with t−, t+ ∈
< and t− < t+. The metric is the following:

g = −U−1dt2 + (2l)2U(dψ + cos Θdφ)2 + (t2 + l2)(dΘ2 + sin2 Θdφ2),

where

U(t) =
(t+ − t)(t− − t)

t2 + l2
and t± = m± (l2 +m2)1/2,

m and l are positive constants, and Θ, ψ, φ are Euler angles on S3. We
will denote the Taub spacetime by 〈M,A, g〉, where A is a maximal
atlas on M . The spacetime is singular at t±, but, as first shown by
Newman et al. (1963), it can be extended forward into two spacetimes
〈M↑+, A↑+, g↑+〉 and 〈M↑−, A↑−, g↑−〉, each with topology (t−,∞) ×
S3, embeddings Λ↑± : M →M↑±, and metrics

g↑± = ±(4l)(dψ+cos Θdφ)dt+(2l)2U(dψ+cos Θdφ)2+(t2+l2)(dΘ2+sin2 Θdφ2).
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(To recall, to say that Λ : M → M ′ is an embedding means that
Λ : M → Λ[M ] is a diffeomorphism and Λ[M ] is open in the topology
on M ′. For details of the construction consult Chruściel and Isenberg
(1991).) Analogously, 〈M,A, g〉 can be extended downward into two
spacetimes 〈M↓+, A↓+, g↓+〉 and 〈M↓−, A↓−, g↓−〉, each with topology
(−∞, t+, ) × S3, embeddings Λ↓± : M → M↓±, and metrics g↓± =
g↑±. Importantly, the upward and downward extensions can be pair-
wise pasted together, producing four spacetimes, known as Taub-NUT
spacetimes: 〈M↑+↓+, A++g++〉, 〈M↑+↓−, A+−, g+−〉 〈M↑−↓+, A−+, g−+〉
〈M↑−↓−, A−−, g−−〉, each with topology (−∞,∞) × S3. The cor-
responding embeddings are denoted by i↑ab : M↑a → M↑a↓b and
i↓ab : M↓b → M↑a↓b. Each Taub-NUT spacetime is Hausdorff. As
for isometry, Chruściel and Isenberg (1991) proved that while the pairs
〈M↑+↓+, A++, g++〉, 〈M↑−↓−, A−−, g−−〉 and 〈M↑+↓−, A+−, g+−〉, 〈M↑−↓+, A−+, g−+〉
are isometric, the pair 〈M↑+↓−, A+−, g+−〉, 〈M↑+↓+, A++, g++〉 is non-
isometric. Note that the non-isometric pair is produced by embeddings:

i↑++ : M↑+ →M↑+↓+ i↑+− : M↑+ →M↑+↓−.

These embeddings establish an isometry between i↓++[M↑+] ⊆M↑+↓+
and i↓+−[M↑+] ⊆ M↑+↓−. Thus, i↓++[M↑+] and i↓+−[M↑+] estab-
lish isometric segments of otherwise non-isometric Taub-NUT space-
times. Moreover, these are maximal isometric segments (Chruściel and
Isenberg, 1991). We will use this fact to produce a non-Hausdorff d-
manifold by means the gluing procedure described in Definition 3.

Consider non-isometric Taub-NUT spacetimes 〈M↑+↓−, A++, g+−〉
and 〈M↑+↓+, A++, g++〉. By the definition of embedding, U++ :=
i↓++[M↑+] ⊆ M↑+↓+ and U+− := i↓+−[M↑+] ⊆ M↑+↓− are open.
Clearly, the function i↓+− ◦ (i↓++)−1 : i↓++[M↑+] → i↓+−[M↑+] and
its inverse are isometries. Thus, we have two gluing functions that
link the two non-isometric spacetimes: φ12 := Λ↓+− ◦ (Λ↓++)−1 and
φ21 = φ−1

12 .
We describe now the d-manifold 〈W,A, g〉 that is a result of glu-

ing two d-manifolds 〈M↑+↓−, A+−, g+−〉 and 〈M↑+↓+, A++, g++〉 in
accord with Definition 3. The glued subsets are U++ ⊆ M↑+↑+ and
U+− ⊆ M↑+↓−, the gluing functions being φ12 and φ21. As we have
only these two gluing functions, it is easy to see that R(x, y) is indeed
an equivalence relation on the union M↑+↓+ ∪M↑+↓−. We thus take
for W a set of representatives of (M↑+↓+ ∪M↑+↓−)/R. Next we de-
fine the topology on W as the coarsest-grained topology that satisfies
O ∈ T ++ → f++[O] ∈ T and O ∈ T +− → f+−[O] ∈ T , where T +±

is the topology induced by atlas A+± on M↑+↓±. We chose a maxi-
mal atlas on W that yields exactly this topology. Finally, to unpack
clause (5), the metric g(p), p ∈ W and metrics g++(q), q ∈ M++ (or
g+−(q), q ∈M+−) agree whenever p and q belong to same equivalence
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class. However, this occurs if p and q are identical or linked by a gluing
function (which is an isometry), so the clause is indeed satisfied.

We now claim that the d-manifold 〈W,A, g〉, constructed as above,
is non-Hausdorff.

Fact 3. A d-manifold 〈W,A, g〉 that results from gluing two non-isometric
Taub-NUT spacetimes in accord with Definition 3, is a non-Hausdorff
d-manifold.

Proof. The d-manifolds 〈M↑+↓+, A++, g++〉 and 〈M↑+↓−, A+−, g+−〉
are non-isometric, as their metrics are different, yet they are the same
as far as topology goes: the sets M↑+↓− and M↑+↓+ are copies of
< × S3 and the atlases are global. The d-manifolds are thus diffeo-
morphic. Further, the points of each d-manifold can be referred to
by coordinates t, ψ, θ, φ, where t ∈ < and ψ, θ, φ are Euler’s angles
on S3. There are thus points defined by the same set of coordinates,
yet belonging to different d-manifolds, which we denote by xt,ψ,θ,φ ∈
M↑+↓− and yt,ψ,θ,φ ∈ M↑+↓+. Consider two points e1, e2 ∈ W , with
e1 = f+−(xt−,0,0,0) and e2 = f++(yt−,0,0,0). We will show that e1, e2

is a non-Hausdorff pair. Let us take arbitrary open neighborhoods of
these points, U1 ⊆ W , e1 ∈ U1 and U2 ⊆ W , e2 ∈ U2. Consider a
diffeomorphism f : M↑+↓− 7→M↑+↓+, f(xt,ψ,θ,φ) = yt,ψ,θ,φ and region
F := f

[
f−1

+−[U1]
]
∩ f−1

++[U2] ⊆ M↑+↓+. F is open in the topology on

M↑+↓+, since f−1
++ and f−1

++ are homeomorphisms (see Fact 2), f is a
diffeomorphism, and U1, U2 are open in the topology on W . The point
yt−,0,0,0 belongs to F . Given the standard topology on < × S3, there
exist t3 > t− such that yt3,0,0,0 ∈ F . From the definitions of f and F
it follows that xt3,0,0,0 ∈ f−1

+−[U1] and yt3,0,0,0 ∈ f−1
++[U2]. These two

points correspond in W to e′1 = f+−(xt3,0,0,0) and e′2 = f++(yt3,0,0,0),
respectively. However, as t3 > t−, the points xt3,0,0,0 and yt3,0,0,0 have
been actually glued together, which implies e′1 = e′2. Since from the
construction e′1 ∈ U1 and e′2 ∈ U2, we conclude that e′1 = e′2 ∈ U1∩U2,
so U1 ∩ U2 is nonempty; hence 〈W,A, g〉 is non-Hausdorff.

We arrived thus at a non-Hausdorff manifold that resulted from glu-
ing together non-isometric Taub-NUT spacetimes. The introduction of
such objects to GR was motivated by a desire to have solutions to EFE
that are as large as possible, but there are trade-offs in this chase for
even larger solutions: the topologically nice (globally hyperbolic and
Hausdorff) but small the Taub spacetime yields to larger Taub-NUT
extensions (not globally hyperbolic but still Hausdorff), which in turn
yield to non-Hausdorff manifolds resulting from gluing together the
former extensions. The first two kinds of object are typically classified
as GR spacetimes. Is the third object a GR spacetime as well? If not,
how should one understand it? Before we address these questions, in
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the next section we put forward two theorems that, we believe, suggest
and support a modal interpretation of non-Hausdorff manifolds in GR.

4 Hausdorff vs. non-Hausdorff manifolds

In this section we prove that any non-Hausdorff d-manifold occurring in
GR can be seen as a result of pasting together a family of Hausdorff d-
manifolds.5 We give first an auxiliary theorem that any non-Hausdorff
manifold can be decomposed into maximal Hausdorff submanifolds. 6

Theorem 2 (Háj́ıc̆ek-Geroch). A family H of all maximal Hausdorff
d-submanifolds of a non-Hausdorff d-manifold W = 〈W,A, g〉 is an
open covering of W.

Proof. Let Ω be the set of all open Hausdorff d-submanifolds ofW, Ω ={
〈U,AU , gU 〉 | U ⊆W — open and Hausdorff, AU = A|U , gU = g|U

}
. We

introduce an ordering relation on the set Ω: 〈U,AU , gU 〉 � 〈V,AV , gV 〉
iff U ⊆ V .7 Obviously, 〈Ω,�〉 is a partial order. Pick now an arbitrary
p ∈ W . By local Euclidicity p has an open neighborhood U∗ homeo-
morphic to an open set of <n. Since <n (in the natural topology) is
Hausdorff, U∗ is Hausdorff as well, i.e., 〈U∗, AU∗ , gU∗〉 ∈ Ω. Consider
next the set Ωp ⊆ Ω of open Hausdorff d-submanifolds containing p.
It is non-empty as 〈U∗, AU∗ , gU∗〉 ∈ Ωp and partially ordered by �.
Take next an arbitrary chain C = {〈U1, AU1

, gU1
〉, 〈U2, AU2

, gU2
〉 . . .}

of elements of Ωp. We argue that C has an upper bound in Ωp.
To this end define the sum U + V of open d-submanifolds of W:
U + V = 〈U ∪ V,AU∪V , gU∪V 〉, where AU∪V is the atlas induced by
A on U ∪ V and gU∪V is the restriction of g to U ∪ V . With the sum
at hand, we define +C := 〈

⋃
Ui, A|

⋃
Ui , g|

⋃
Ui〉 with A|

⋃
Ui and g|

⋃
Ui

explained analogously as above, and claim that +C belongs to Ωp and
is an upper bound of C. Obviously,

⋃
Ui is open and p ∈

⋃
Ui. +C

is also Hausdorff since otherwise a pair witnessing non-Hausdorffness
had to belong to some Uk (as C is a chain), which is a contradiction.
Thus, +C ∈ Ωp. It is also easy to note that for any c ∈ C: c � +C.
Putting these together, C has an upper bound in Ωp. We have thus
seen that the assumptions of the Zorn-Kuratowski lemma are satisfied,

5We are indebted to P. Chruściel for describing to us some non-Hausdorff manifolds
that occur in GR, and for posing the challenge of proving whether or not they are all
constructible from Hausdorff d-manifolds. We hope we meet this challenge in this section.

6Proof of a slightly different theorem (restricted to completely separable non-Hausdorff
manifolds) is given by Háj́ıc̆ek, who attributes it to Geroch; we present here our version,
which is shorter and without the extra premise.

7 Note that since Ω consists of open d-submanifolds, in the definition of �, the inclusion
induces the expected relation on atlases and metrics: a map from AU is the restriction to
U of a map from AV and gU is the restriction of gV to U .
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so by that lemma we get it that Ωp has a maximal element. By un-
packing this claim, we have it that there is an open maximal Hausdorff
d-submanifold that contains p. As p is arbitrary, we proved that H is
an open covering of W.

We have finally come to the main theorem of this paper:

Theorem 3. Any non-Hausdorff d-manifold 〈W,A, g〉 can be con-
structed by gluing together of maximal Hausdorff d-submanifolds of
〈W,A, g〉, with gluing defined in Definition 3.

Proof. Let 〈W,A, g〉 be a non-Hausdorff d-manifold. By the Theo-
rem 2, we can construct its open covering by maximal Hausdorff d-
submanifolds H. We will show that 〈W,A, g〉 can be constructed by
gluing together these d-submanifolds. We number elements of H by
index set Γ of an appropriate cardinality: H = {〈Uν , AUν , gν〉}ν∈Γ. For
every two Uµ, Uν , we define Uµν = Uµ ∩ Uν . Observe that there exist
µ, ν such that Uµν 6= ∅ (take any non-Hausdorff connected component
of W — its covering contains at least two elements which overlap).
As a family of gluing functions take simply restrictions of identity on
W to nonempty Uµν , that is, φµν : Uµν 7→ Uµν , φµν(p) = p for ev-
ery p ∈ Uµν . They indeed satisfy the defining conditions of a gluing
function, as Uµν are open and identity is obviously an isometry. Let
us define equivalence relation R ⊆ W ×W in the following way: xRy
iff (1) x = y for x /∈

⋃
{Uµν : µ, ν ∈ Γ, Uµν 6= ∅} or (2) φµν(x) = y for

x ∈ Uµν 6= ∅. Now, define W ′ as a set of representatives of all elements
of W/R. As all elements of this quotient structure are singletons, ob-
viously W ′ = W . The atlas A and atlases on d-submanifolds agree in
the sense of Definition 3 since the latter are restrictions of the former
to d-submanifolds in question. The metric g and metrics gµ agree for
similar reasons.

Needless to say, the theorem implies that any non-Hausdorff d-
manifold 〈W,A〉 (i.e., without an associated metric) can be constructed
by gluing together of maximal Hausdorff d-submanifolds of 〈W,A〉
(again, without metrics).

The theorem provides an underpinning for the modal interpreta-
tion of a non-Hausdorff manifold occurring in GR, which sees it as
encapsulating a bundle of alternative GR spacetimes, all of which are
compatible with the initial data set. Their support for the modal inter-
pretation comes from the universality the theorems bring. Just think
of a non-Hausdorff manifold produced in the context of a failure of the
initial value problem. The theorems then say that this manifold can be
decomposed into maximal Hausdorff sub-manifolds and the decompo-
sition is faithful in the sense that the initial non-Hausdorff manifold is
recovered by gluing these sub-manifolds together. Moreover, whenever
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gluing identifies some regions of sub-manifolds, these regions are physi-
cally alike (they are identical). A non-Hausdorff manifold, whose max-
imal Hausdorff sub-manifolds have some additional features so they
qualify as GR spacetimes, naturally reads as a bundle of GR space-
times that is glued together in physically identical regions. Further, if
the metrics on the sub-manifolds satisfy EFE, the sub-manifolds are
arguably physically possible and are compatible with the physical sit-
uation in regions of overlap.

On the other hand, the universality of the above theorems spells
trouble for the modal interpretation as they are not sensitive to tem-
poral orientation. The gluing procedure can glue together regions that
are in any possible relation to a specified region: they can be to the
past or to the future of it, or related to it in a space-like way.8 Needless
to say, only the first option is compatible with indeterminism, under-
stood as the existence of alternative future developments. It is thus
problematic whether just any non-Hausdorff d-manifold can admit the
modal interpretation.

5 Bifurcating curves – friends or foes?

There is a staple objection against non-Hausdorff manifolds that (1)
they admit bifurcating curves or bifurcating geodesics, and that (2)
such bifurcating objects are bad. Against (2) we argue that on the
modal interpretation of non-Hausdorff manifolds, such bifurcating ob-
jects are not bad; to the contrary, they are very much welcome. How-
ever (we continue to argue), there is typically no room for bifurcating
geodesics in non-Hausdorff manifolds, in contrast to objection (1). As
we would like to have bifurcating geodesics, we are not happy about
the second argument.

To give some examples of the objection to bifurcating geodesics,
since a geodesic is standardly assumed to be a (potential) worldline of
a free test particle, Earman (2008) asked “how would such a particle
know which branch of a bifurcating geodesic to follow?”. In a similar
vein, Hawking and Ellis (1973)[p. 174] opined that “a [bifurcating]
behavior of an observer’s world-line would be very uncomfortable”,
with “one branch going into one region and another branch going into
another region”. Háj́ıček (1971b)[p. 79] observed that a system cannot
have two solutions unless these solutions form a bifurcating curve, and
concludes: “Therefore, in view of the classical causality conception
coinciding with determinism it is sensible to rule out the bifurcate
curves.”

8Here emerges an interesting question of whether one can glue two manifolds in a fully
atemporal way, i.e., such that for any point in the glued-together region, the region has
alternative developments only in the space-like directions.
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Now, if indeterminism, in the sense of the existence of a system’s
alternative possible evolutions, is true, the objections fall flat. That
is, if indeterminism is true, there is no answer why one rather than
another alternative possible evolution actually occurs. Similarly, an
indeterministically evolving observer might go into one spatiotempo-
ral region, but also might go into a different spatiotemporal region.
Finally, given the existence of alternative possible evolutions, picking
determinism as a construction principle for a theory of physics is not
conductive to truth, though it may have other virtues.

To relate these observations to objection (2), an intuitive way of pic-
turing indeterminism conceives it as being produced locally in space
and time. That is, if we contemplate alternative evolutions, musing
for instance why one rather than the other has actualized, we wonder
when and where one of these evolutions stopped being possible, and
what brought this about. Arguably, in such contexts we are after a
well-localized object. A paradigmatic example is a pointer to a well-
localized electron in a Stern-Gerlach device: before it enters the device,
scenarios with traces at the bottom or top of the photographic plate
are possible, but after the electron has left the device only one of them
is possible. The behavior of the electron in the Stern-Gerlach device
is seen as underlying the dynamics of the global scenarios: once two
alternative scenarios were possible, but later only one was possible.
Clearly, similar appeals to the behavior of well-localized objects to ex-
plain the dynamics of global scenarios is even more dominant in human
affairs, when the fact that we live in one scenario rather than another
is attributed to agents’ choices. We call this variety of indeterminism
“local indeterminism”.

On local indeterminism, alternative evolutions of a big system (our
world included) require alternative evolutions of at least one of its
small components. As one idealizes the component to be point-like,
the alternative evolutions can be seen as alternative trajectories with
two coinciding segments and two separate segments. With further
assumptions, such trajectories can be represented as functions from
a real interval to a manifold’s base set. Needless to say, trajectories
representing alternative evolutions bifurcate. As the standard view on
geodesics identifies them with trajectories of (test) particles, it follows
that geodesics representing alternative evolutions of a (test) particle
bifurcate as well. Accordingly, if cases of non-unique solutions to EFE
mean indeterminism, and the indeterminism in question is local, there
must be bifurcating curves.

Turning to objection (1), a pertinent question is whether non-
Hausdorff manifolds indeed imply the existence of bifurcating curves.
There is a compelling picture linking non-Hausdorffness to bifurcating
curves. It works like this: suppose we have a pair of points, e1 and
e2, witnessing a failure of the Hausdorff condition. Then it ‘must’ be
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possible to draw two continuous lines, one passing through e1 and the
other passing through e2 in such a way that they coincide below the
two points, but do not overlap above them, where ‘below’ and ‘above’
are purely conventional. Thus, the picture suggests that we can always
use a failure of Hausdorffness to produce bifurcating curves. Yet, this
picture is misleading and wrong: there are non-Hausdorff d-manifolds
that do not admit bifurcating curves. For an analysis of how it is
possible in a physically relevant case of a non-Hausdorff extension of
Misner spacetime, see Margalef-Bentabol and Villaseñor (2014). (This
case is relevant as the extension is produced by the pasting technique
of Definition 3). Under what conditions non-Hausdorff d-manifolds
admit bifurcating curves is thus a nontrivial question that is answered
by Háj́ıc̆ek’s (1971a) theorem, stated below.

After this preview, let us do some work. First (to recall), by a
curve one means a continuous function from a real interval to a man-
ifold’s base set, and a geodesic is a curve that satisfies the geodesic
equation. Does uniqueness results obtain for geodesics, and if so, is
Hausdorffness needed for uniqueness to obtain? Beginning with local
uniqueness, in a Hausdorff or non-Hausdorff d-manifold alike, if a met-
ric g is appropriately continuous, given a point p and a vector at this
point, in some neighborhood of p there is a unique geodesic that passes
through the point and whose tangent at this point coincides with the
vector.9 Hausdorffness permits strengthening this local result to global
uniqueness: for a Hausdorff d-manifold M , given the continuity condi-
tion on g, a point p ∈M and a vector ξ at p, there is a unique maximal
geodesic γ : I → M such that (1) γ(0) = p and (2) γ̇(0) = ξ, where
γ̇(0) stands for a tangent to γ at point p = γ(0). The maximality of
γ means that if there is some other geodesic γ′ : I ′ → M satisfying
conditions analogous to (1) and (2) above, then I ′ ⊆ I. In sum, (given
the continuity assumption on g), no geodesics can bifurcate in Haus-
dorff manifolds, but non-Hausdorff manifolds might be conductive to
bifurcating geodesics.

Having the distinction between global and local uniqueness of geodesics,
we link it to two kinds of bifurcation (cf. Háj́ıc̆ek (1971a)).

Definition 4. A bifurcating curve of the first kind on a Cr generalized
d-manifold M is a pair 〈C1, C2〉 of Cr-continuous curves C1 : I →M ,
C2 : I → M such that for some k ∈ I: ∀x ∈ I [x 6 k ⇔ C1(x) =
C2(x)], where I is an interval in <.
A bifurcating curve of the second kind on a Cr generalized d-manifold
M is a pair 〈C1, C2〉 of Cr-continuous curves C1 : I →M , C2 : I →M
such that for some k ∈ I: ∀x ∈ I [x < k ⇔ C1(x) = C2(x)].

9See e.g. Chruściel (2011, p. 6). Typically, a metric of a GR spacetime meets the
mentioned continuity requirement. For examples of metrics that do not satisfy it and
accordingly generate non-unique bifurcating geodesics, see (Chruściel, 1991, Appendix F).
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Thus, in a bifurcating curve of the first kind, there is a maximal element
of interval I at which C1 and C2 agree, whereas in a bifurcating curve
of the second kind there is no maximal element in I at which C1 and
C2 agree.

Now, as in a generalized d-manifold a geodesic is uniquely deter-
mined, locally speaking, by a point and a vector, no geodesics can
make a bifurcating curve of the first kind. Thus, there is no room for
bifurcating geodesics of the first kind in generalized d-manifolds. But
local uniqueness alone does not preclude bifurcating curves of the sec-
ond kind. Such curves are precluded by global uniqueness, and global
uniqueness is true in Hausdorff d-manifolds. Thus, if there are bifur-
cating geodesics, they are of the second kind and in a non-Hausdorff
manifold. But are they there?

As we have shown, any non-Hausdorff d-manifold is constructible
from a family of Hausdorff manifolds, so perhaps this information can
shed light on the existence of bifurcating curves (of the second kind)
in these manifolds? As we shall see, this is indeed the case.

We need an auxiliary notion to begin with.

Definition 5 (Continuously extendible gluing). A gluing map φ : A 7→
B,A ⊆M1, B ⊆M2 is continuously extendible iff there exist A′, B′, φ′

such that A ( A′ ⊆ M1, B ⊆ B′ ⊆ M2, φ′ : A′ 7→ B′, φ′ is continuous
and φ′|A = φ.

Theorem 4. The necessary and sufficient condition for a d-manifold
constructed by gluing together Hausdorff d-manifolds to admit bifur-
cating curves of the second kind is that the gluing be continuously ex-
tendible. (Háj́ıc̆ek, 1971a)

As every non-Hausdorff d-manifold is constructible by gluing of
Hausdorff d-manifolds, Háj́ıc̆ek’s theorem yields a universal method to
decide if it admits bifurcating geodesics, or not.

We use Theorem 4 to argue that ‘sound’ non-Hausdorff d-manifolds
(to be explained soon) occurring in GR are not continuously extendible,
and hence do not admit bifurcating curves of the second kind. Let
us return to our GR example: the construction of the non-Hausdorff
extension of the two Taub-NUT spacetimes exhibited in Section 3.
The open sets U++ and U+−, glued together by isometry φ12, are
maximal isometric subsets of M↑+↑+ and M↑+↓−, respectively. Thus
any function f : M↑+↑+ → M↑+↓− that properly extends φ12 is not
an isometry, so it is not glued. Accordingly, the gluing that produces
a non-Hausdorff extension of the Taub spacetime is not continuously
extendible. Ergo, the non-Hausdorff extension of the Taub spacetime
admits no bifurcating curves of the second kind.

Now, if every non-Hausdorff d-manifold occurring in GR behaves
like the non-Hausdorff extension of Taub-NUT spacetimes described
above, there would be no bifurcating curves of the second kind in
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these manifolds. So the question is whether this example generalizes
to other non-Hausdorff manifolds that are constructible in GR. Ob-
serve that the crucial move of the above argument is that the regions
identified by the gluing function are maximal isometric regions of the
component manifolds. A corresponding requirement is not part of Def-
inition 3 of the gluing function and is not part of Definition 3 of the
gluing procedure. These definitions describe an abstract mathematical
object, a generalized d-manifold, and its relation to Hausdorff man-
ifolds, understood as its components. They do not pay attention to
how and at which end the defined procedure can be applied.

The application we investigate and advertise aims to produce a
modal representation of a spatio-temporal world: if there are non-
unique solutions of EFE for some data (which, by the Choquet-Bruhat
and Geroch theorem, cannot be globally hyperbolic (1969)), we con-
sider these solutions as alternative possible evolutions that start from
an initial data set and we paste them together into a non-Hausdorff
manifold. In this application a natural directive is to identify (by glu-
ing) whatever can be identified, following the idea that indeterminism
requires a qualitative difference between alternative possible scenarios.
This amounts to the requirement to glue together maximal isomet-
ric regions of component manifolds if there are such regions. Gluing
larger regions is excluded by Definitions 2 and 3, but gluing smaller
than maximal isometric regions is allowed by these definitions.

To accommodate the desideratum to glue together maximal iso-
metric regions of component manifolds, one may add this postulate to
Definition 3:

Postulate 1 (sound gluing of manifolds). For p ∈Wµ, q ∈Wη,
fµ(p) = fη(q) iff there are open subsets A and B of Wµ and Wη, resp.,
and an isometry ξ : A 7→ B s.t. p ∈ A, q ∈ B, and ξ(p) = q.

The left-hand side means that two points, each from a different compo-
nent manifold, give rise to one and the same point in the non-Hausdorff
d-manifold, whereas the right-hand says that the points belong to ap-
propriate isometric open subsets and are linked by a corresponding
isometry. It would be counter-intuitive if some pairs of isometry-linked
pairs p and q give rise to single points in the resulting non-Hausdorff
d-manifold, but others give rise to pairs of points. This discrepancy
would call for an explanation, but none would be forthcoming. In
this case, a non-Hausdorff d-manifold would adequately account for
the isometry relations inherent in its building blocks. To link this to
determinism, gluing of regions smaller than maximal isometric ones
produces what might be called indeterministic branching without a
qualitative difference: immediately “above” identified regions there
would be qualitatively identical neighboring regions that nevertheless
belonged to separate spacetimes. This pattern of similarity vs. identi-
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fication leads to concern over why these qualitatively identical neigh-
boring regions are not identified by the gluing function.

Clearly, Postulate 1 raises mathematical or interpretational issues:
Do any two Hausdorff d-manifolds admit maximal isometric regions?
Even if in a collection of Hausdorff d-manifolds any two of them have
maximal isometric regions, does the gluing procedure always satisfy
Postulate 1 (i.e., doesn’t the multiplicity of components get in the
way?) Can there be non-connected maximal isometric regions, and if
so, how are we to interpret the resulting non-Hausdorff manifold?

We leave these issues aside as they are somewhat tangential to the
main observation of this section. This observation is, in a nutshell, that
the more successful one is in delivering a modal representation of mul-
tiple solutions to EFE, the less likely are the bifurcating curves of the
second kind. We take it that a successful representation of indetermin-
ism calls for the satisfaction of Postulate 1. This postulate requires
gluing functions to identify maximal isometric regions, which means
that the functions are not continuously extendible; so, by Theorem 4
the resulting non-Hausdorff manifold does not admit bifurcating curves
of the second kind, and hence does not admit bifurcating geodesics of
the second kind. Since, to recall, by the geodesic equation there are no
bifurcating geodesics of the first kind either, there are no bifurcating
geodesics. On the other hand, it might happen that a particular set of
multiple solutions to EFE does not satisfy the Postulate, in which case
the modal interpretation of these solutions is doubtful. Yet a failure
of the Postulate may open the door for bifurcating curves (geodesics)
of the second kind.

We find this situation deeply paradoxical. In a nutshell, given a
set of multiple solutions to EFE, the better the case it makes for the
indeterminism of GR, the worse it is for local indeterminism. Perhaps
a way out is to countenance a non-local variety of indeterminism. This
comes with a price, however, as the divergence of the two notions of
local and global indeterminism is deemed counterintuitive, see e.g.,
Belot (1995); Melia (1999); Sattig (2015).

6 Conclusions

Our paper revolves around two questions, both related to non-Hausdorff
manifolds in GR: (1) What can these manifolds represent? And, in
particular, (2) can they be used to represent indeterminism, modally
understood?

The main formal result in the light of which we studied these ques-
tions says that every non-Hausdorff d-manifold can be constructed
by gluing together a family of Hausdorff d-manifolds. This of course
means that the gluing procedure delivers every non-Hausdorff d-manifold
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of GR as well. Typically, the construction of these manifolds in GR
is motivated by the desire to produce a possibly large solution of
EFE, and gluing together non-isomorphic solutions to EFE is a way
to achieve this goal. The side-effect of this procedure, however, is
that the resulting objects are non-Hausdorff. Since Hausdorffness is
standardly required for a manifold to represent a GR spacetime, the
question emerges of what such non-Hausdorff manifolds constructed in
GR can represent.

To begin with the negative response, it says that non-Hausdorff
manifolds are purely mathematical objects, and so they cannot repre-
sent anything physically meaningful. Another option, which was once
investigated in the physics literature, is to relax the criteria for being
a GR spacetime, so a non-Hausdorff d-manifold is not automatically
dismissed as a candidate for a GR spacetime. Our own attempt is
to steer somewhere between these two responses. We concede that
non-Hausdorff manifolds produced outside of the context of the initial
value problem might have no interpretation. We conservatively keep
the requirement of Hausdorffness for GR spacetimes, while viewing
a non-Hausdorff manifold produced by gluing together a set of non-
unique solutions to EFE as a modal representation of this set. That is,
we read such a manifold as encapsulating multiple possible spatiotem-
poral evolutions (spacetimes) every one of which is compatible with a
given initial data set; this looks like a clear case of indeterminism.

To adopt this interpretation, we argued that a non-Hausdorff man-
ifold should be constructible by a more stringent gluing procedure,
one that satisfies Postulate 1 as well. Although a non-Hausdorff mani-
fold whose components are non-isometric Taub-NUT spacetimes is con-
structible by the more stringent procedure, we do not know if this more
stringent gluing procedure can be performed for all cases. More worry-
ingly (from a philosophical perspective), Postulate 1 has a consequence
(via Theorem 4) that spells trouble for the modal interpretation: there
are no bifurcating curves, and hence, no bifurcating geodesics in a non-
Hausdorff manifold obtained by the gluing procedure that satisfies the
Postulate.

As we argued, the usual notion of indeterminism is local: if there
are alternative evolutions of a big system, some small component of
this system has to have alternative trajectories. Since geodesics are
standardly identified with trajectories of free (test) particles, the fact
that there are no bifurcating geodesics excludes local indeterminism.
Thus, a non-Hausdorff manifold produced in accord with Postulate 1
cannot represent locally indeterministic evolutions. It looks like we are
thus back to square one: what can non-Hausdorff manifolds represent?

The answer depends on what stance one takes to a non-local variety
of indeterminism, which might, and in GR cases does, conflict with the
local variety. If we accept the non-local notion, there is no obstacle to
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reading a non-Hausdorff manifold produced from non-unique solutions
of EFE in accord with Postulate 1 as the representation of non-local
indeterminism. After all, relativistic physics has questioned a few intu-
itive notions, so its verdict that there might be indeterminism without
local indeterminism should not come as a big shock. But, arguing in
the opposite direction, one might recall that GR is concerned with big
rather than small objects, so its failure to accommodate local indeter-
minism might just reflect its neglect of micro objects. Another option
is to consider non-Hausdorff manifolds as they occur in GR contexts
as purely mathematical objects without any physical meaning. Fi-
nally, the old option of some physicists – allowing for non-Hausdorff
spacetimes – might be back on the table: their main objection to non-
Hausdorffness was that it introduces bifurcating geodesics, but as we
saw, there are no such geodesics if Postulate 1 is accommodated.10

We leave to the Reader the choice as to which option is preferred.
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