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Abstract

In light of Chen (2024)’s recent objection to Rosenstock et al. (2015), this paper

reconsiders the question “does the Einstein algebra formalism favor relationalism?”.

Following the structural comparison approach adopted by Rosenstock et al., I pro-

pose a new formal criterion to investigate the question in place of the categorical

criterion of theoretical equivalence, inspired by John Earman’s program of Leibniz

algebras. Based on the new criterion, the paper shows that the Einstein algebra

formalism does not favor relationalism. It re-affirms Rosenstock et al.’s conclusion

with a new technical result that is not subject to Chen’s objection.
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1 Introduction

The controversy of substantivalism versus relationalism, two metaphysical theses on the

ontology of space and time, has a long history in philosophy of physics1. One important

difference of the two positions is that relationalism is more parsimonious than substanti-

valism: relationalism doesn’t posit the existence of space and time independent of material

bodies, while substantivalism does. Which metaphysical view is favored by our physical

theory of space and time? The standard mathematical formalism for the theory of space

and time, the standard manifold formalism, starts with the mathematical structure of a

smooth manifold, and then introduces fields on the manifold. For this reason, the stan-

dard manifold formalism seems to favor substantivalism. In contrast, the Einstein algebra

formalism for the theory of space and time, formulated by Robert Geroch, defines fields

without any background manifold-like mathematical structure. Does the Einstein alge-

bra formalism favor relationalism? To answer this question, it is important to determine

whether the Einstein algebra formalism is more parsimonious than the standard mani-

fold formalism in the way that relationalism is more parsimonious than substantivalism.

This calls for a structural comparison between the standard manifold formalism and the

Einstein algebra formalism.

Philosophers have been working on the relationship between the Einstein algebra for-

malism and relationalism for several decades. John Earman’s classic works propose a

program of Leibniz algebras — an attempt of formulating a relationalist’s formalism for

the theory of space and time based on Einstein algebras (Earman, 1977, 1979, 1986,

1989). In response to Earman, Robert Rynasiewicz (1992) and Rosenstock et al. (2015)

show various senses in which Einstein algebras are equivalent to relativistic spacetimes.

They both point out that the structure of a smooth manifold and the relevant algebraic

structure of the collection of smooth scalar fields on a manifold turn out to be mutually

constructible from each other. Rosenstock et al. identify the relevant algebraic structure

to be the smooth algebra introduced by Jet Nestruev (2003) and illustrate the equivalence

of smooth manifolds and smooth algebras by establishing a categorical duality. They then

show another categorical duality that holds for relativistic spacetimes and their version

of Einstein algebras defined based on smooth algebras. Rosenstock et al. thus give a

negative answer to the structural comparison question: Einstein algebras are not more

structurally parsimonious than relativistic spacetimes, because the two are categorically

dual to each other. Therefore, they suggest that insofar as one wants to associate the two

formalisms with the two metaphysical views on the nature of space and time, the Einstein

algebra formalism is as “substantivalist” as — and, for the same reason, as “relationalist”

as — the standard manifold formalism (p315).

1For an overview, see Pooley (2013).
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Nevertheless, Lu Chen (2024) recently points out that there is a gap in Rosenstock

et al.’s argument. Rosenstock et al. assume that an Einstein algebra is a smooth algebra

with a 4-dimensional Lorentizian metric and prove the categorical duality between Ein-

stein algebras defined in this way and relativistic spacetimes. However, the definition of

a smooth algebra postulates more structures than what Geroch (1972)’s formulation of

Einstein algebras does. Chen criticizes this assumption of Rosenstock et al. and points

out that the metaphysical question concerning the Einstein algebras originally defined by

Geroch is in fact not addressed by their paper. This takes us back to the starting point.

Motivated by Chen’s criticism on Rosenstock et al.’s argument, this paper reconsiders the

structural comparison of the standard manifold formalism and the Einstein algebra for-

malism, proposes a new criterion for the structural comparison, and eventually reaffirms

Rosenstock et al.’s conclusion that the Einstein algebra formalism is as “substantivalist”

as the smooth manifold formalism with a new result.

Here is the detailed plan of the paper. Section 2 provides the technical background. I

will first introduce the standard manifold formalism and the Einstein algebra formalism,

and then present Rosenstock et al. (2015)’s categorical duality theorem of smooth man-

ifolds and smooth algebras. After that, I will present Chen’s criticism. To address the

criticism, I take a step back to revisit Earman’s program of Leibniz algebras in Section

3. After recapitulate Earman’s main ideas, I formalize the program of Leibniz algebras

with the tools of category theory. Inspired by this formalization, I propose a new for-

mal criterion which states that the appropriately defined representation functor from the

category of smooth manifolds to the category of algebraic models in consideration has

to fail to be full and faithful for the algebraic formalism to be more parsimonious than

the standard manifold formalism in the relationalist’s sense, or in short, for the algebraic

formalism to be “structurally relationalist”. I show that the Einstein algebra formalism

is not “structurally relationalist” based on this criterion (Theorem 2 ) and also re-cast

Rosenstock et al.’s duality theorem as a corollary of this paper’s main result. In Section

4, I further defend the proposed criterion for an algebraic formalism to be “structurally

relationalist” with the example of Sikorski algebras (to be defined in Section 4 ) and differ-

ential spaces. Finally, the paper concludes with two messages: first, the Einstein algebra

formalism does not favor relationalism; second, the proposed criterion can be a helpful

replacement of the categorical criterion of theoretical equivalence for the substantivalism

and relationalism debate.
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2 Two Formalisms and a Duality Theorem

2.1 Two Formalisms

In the standard presentation of general relativity, one starts with the notion of smooth

manifolds2. An n-dimensional smooth manifold (M,C) consists of a set M and an atlas

C of n-charts on M , which defines a topology that is Hausdorff and second-countable,

and introduces a smoothness structure on M , which allows us to identify smooth maps

from M to another smooth manifold. Two manifolds (M,C) and (M ′, C ′) are called

diffeomorphic to each other if there is a bijective smooth map from M to M ′ whose

inverse is also smooth — this map is called a diffeomorphism. A tensor field on M is

an assignment of a tensor to each point of the manifold. A relativistic spacetime is de-

fined to be a Lorentzian manifold, which is a four-dimensional connected manifold with

a smooth metric (tensor) field of Lorentzian signature. Relevant physical fields, such as

the electromagnetic field, can be defined as tensor fields on the background spacetime.

This is the standard manifold formalism for the theory of space and time.

On the other hand, alternative algebraic formalisms strive to define fields by their alge-

braic structures only, without referring to an underlying manifold. The mostly discussed

algebraic formalism by philosophers of physics is the Einstein algebras, formulated by

Robert Geroch (1972). Geroch observes that, for any smooth manifold M , the collection

of all smooth scalar fields on M forms a commutative ring with pointwise addition and

multiplication. Denote this commutative ring by C∞(M). The collection of all constant

functions on M forms a subring of C∞(M) that is isomorphic to R. He then illustrates

how the mathematical notions, including tensor fields, needed for general relativity can be

introduced by just constructing relevant algebraic structures based on C∞(M), instead of

defining them on the points of the underlying smooth manifold. Geroch therefore defines

an Einstein algebra to consist of a commutative ring F which has a subring R isomorphic

to R and a metric defined algebraically on F (Geroch, 1972, p274)3.

For simplicity, this paper does not deal with the metrics in either the standard mani-

fold formalism or the Einstein algebra formalism. This simplification should not compro-

2This brief presentation follows Malament (2012)’s and Wald (1984)’s definition of smooth manifolds.
Refer to these textbooks for the full definitions of the notions presented in this paragraph.

3According to Geroch, we can define a contravariant vector field on M as a derivation on C∞(M).
The collection D of all smooth contravariant vector fields forms a module over the commutative ring
C∞(M). The dual module D∗ of D is the collection of all smooth covariant vector fields. A metric g
is then defined to be an isomorphism from D to D∗ that satisfies the symmetry condition: for any ξ
and η in D , g(ξ, η) = g(η, ξ), where g(ξ, η) is defined to be g(ξ)(η). This is equivalent to the symmetry
condition in the standard manifold formalism. The fact that a metric is defined to be an isomorphism
guarantees that it is non-degenerate. This algebraic definition of a metric therefore corresponds to the
definition of a metric in the standard manifold formalism.
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mise the argument of the paper, as Chen (2024)’s criticism doesn’t concern the metric

structure. Call a commutative ring which has a subring isomorphic to R an Einstein ring.

The following discussion will focus on smooth manifolds and Einstein rings exclusively,

from which I will draw conclusions about the standard manifold formalism and the Ein-

stein algebra formalism.

A remarkable difference between the Einstein algebra formalism and the standard

manifold formalism is that the former does not start with positing any background

manifold-like structure for fields to be defined on. Do the two formalisms imply dif-

ferent ontological views on the nature of space and time? Substantivalism states that

space and time exist independent of matter within them, while relationalism denies it.

The way that the standard manifold formalism is constructed favors substantivalism, for

the spacetime manifold is posited independently of and prior to fields. On the other hand,

the Einstein algebra formalism appears to favor relationalism. This inference by inspec-

tion, however, is not sufficient. Rosenstock et al. (2015) claim that the standard manifold

formalism and the Einstein algebra formalism are shown to be theoretically equivalent.

The theoretical equivalence shows that “on a natural standard of comparison, the two

theories have precisely the same mathematical structure — and thus, we claim, the same

capacities to represent physical situations” (Rosenstock et al., 2015, p315). Hence they

claim that Einstein algebra formalism does not favor relationalism. This structural com-

parison approach of Rosenstock et al. connects the philosophical question concerning the

nature of space and time to the formal frameworks of determining theoretical equivalence

in physics. In addition to observing the way in which Einstein algebras are defined, the

structural comparison approach uses formal tools to investigate whether a formalism is

more parsimonious than another in terms of their mathematical structures. The struc-

tural parsimony of a formalism, compared to the standard manifold formalism, should

correspond to the ontological parsimony of relationalism, compared to substantivalism.

Rosenstock et al. infers from their equivalence result, or in other words, the lack of

structural parsimony of the Einstein algebra formalism compared to the standard man-

ifold formalism, to the conclusion that the Einstein algebra formalism cannot favor the

ontologically parsimonious relationalism. I present their equivalence result in the next

subsection.

2.2 The Duality Theorem

As surveyed by Weatherall (2019), philosophers of physics have widely discussed for-

mal criteria of identifying theoretical equivalence. One prevalent criterion in the recent

literature is the categorical criterion of equivalence. According to the categorical crite-
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rion of equivalence, two theories are equivalent if the categories of models of the two

theories are equivalent as categories. This equivalence of categories is made precise by

well-behaved functors between two categories4. Let C and D be two categories, and let

F be a contravariant functor from C to D. F is said to be faithful if and only if for any

two objects A and B in C, the induced map (f : A → B) 7→ (F (f) : F (B) → F (A))

taking arrows from A to B in C to arrows from F (B) to F (A) in D is injective. F

is said to be full if and only if for any two objects A and B in C, the induced map

(f : A → B) 7→ (F (f) : F (B) → F (A)) taking arrows from A to B in C to arrows

from F (B) to F (A) in D is surjective. F is said to be essentially surjective if and only

if for any D in D, there is an object A in C such that F (A) is isomorphic to D in D

— that is to say, there are arrows f : F (A) → D and f−1 : D → F (A) in D such that

f−1 ◦ f = 1F (A) and f ◦ f−1 = 1D. If F fails to be faithful, we say that F forgets stuff.

If F fails to be full, we say that F forgets structure. If F is faithful, full, and essentially

surjective, then F is said to realize a categorical duality of C and D, and the categories

C and D are said to be dual to each other. Dual categories are equivalent to each other,

as they can be viewed as “mirrored copies” of each other in the sense that the direction

of their arrows is systematically reversed.

The category of models for smooth manifolds in the standard manifold formalism is

defined by Rosenstock et al. (2015) as SmoothMan with the following:

• objects: smooth manifolds M,N, · · · , and
• arrows: smooth maps φ :M → N where M and N are smooth manifolds.

On the algebraic side, Rosenstock et al. work with the notion of smooth algebras intro-

duced by Jet Nestruev (2003). To give the definition of smooth algebras, some prelimi-

naries are needed. We start with R-algebras :

Definition 1 (R-algebras). An R-algebra A is a vector space over R with an additional

associative and commutative vector multiplication and a multiplicative identity.

It is not hard to see that an Einstein ring is an R-algebra. We call the collection of

R-algebra homomorphisms — which preserve the vector space operations, products, and

the multiplicative identity — from an R-algebra A to R (which is also an R-algebra) the
dual algebra of A, denoted by |A|. Elements in the dual algebra of A are called points of

the algebra A. If A has only the zero element in the intersection of kernels of all the points

of A, then elements in A can be canonically identified with functions taking points of A
to R by a bijective map. Such an algebra A is said to be geometric (Nestruev, 2003, p23).

Define the coarsest topology on |A| that makes every element of A, canonically identified

in the way described just now continuous. An R-algebra A is said to be complete if it

4The following presentation of the categorical criterion of equivalence follows Weatherall (2019) and
Rosenstock et al. (2015). It assumes familiarity with definitions of categories and functors, which can be
found in standard textbooks on category theory such as (Awodey, 2010).
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contains all the maps on |A| that are locally equivalent to elements of A, in the sense

that if f : |A| → R agrees with some g ∈ A restricting to some neighborhood of p for

any p ∈ |A|, then f ∈ A (Nestruev, 2003, p30-31). Restricting to a subset U ⊂ |A|,
the algebra A|U is defined to be the R-algebra containing all the functions f : U → R
that are locally equivalent to some element of A. Now we give the definition of smooth

algebras:

Definition 2 (Smooth algebras). A complete, geometric algebra A is called a smooth

algebra if there is an at most countable open covering {Uk}k∈N of |A| such that all the

algebras A|Uk
, k ∈ N, are isomorphic to C∞(Rn) for some fixed natural number n.

Given a smooth manifold M , the collection C∞(M) of all its smooth scalar fields is

not just an R-algebra, but a smooth algebra (Nestruev, 2003, 7.5 & 7.6). The category

of models for smooth algebras, SmoothAlg, is defined to consist of:

• objects: smooth algebras A,B, · · · , and
• arrows: R-algebra homomorphisms5 f : A → B whereA and B are smooth algebras.

The two categories SmoothMan and SmoothAlg turn out to be equivalent, as

shown by the following duality theorem:

Theorem 1. SmoothMan is dual to SmoothAlg. (Rosenstock et al., 2015, Theorem

3.5)

According to the categorical criterion of theoretical equivalence, smooth manifolds and

smooth algebras are equivalent. That is to say, the standard manifold formalism posits

the same mathematical structure as the smooth algebra formalism does (Rosenstock et al.,

2015, p315). The smooth algebra formalism hence does not favor relationalism. Rosen-

stock et al. further identify an Einstein algebra as a 4-dimensional smooth algebra with

additional structures defined on it (Rosenstock et al., 2015, Section 4). Based on this

assumption, they show that the Einstein algebra formalism and the relativistic spacetime

formalism are equivalent, by establishing another categorical duality (Rosenstock et al.,

2015, Theorem 4.5), and conclude that the two formalisms “encode precisely the same

physical facts about the world, in somewhat different languages” (Rosenstock et al., 2015,

p316). Rosenstock et al. therefore establish the following conventional wisdom: the Ein-

stein algebra formalism is as “substantivalist” as the standard manifold formalism (ibid.).

In other words, the conventional wisdom states that the Einstein algebra formalism does

not favor relationalism.

5An R-algebra homomorphism is a map that preserves the vector space operations, the product, and
the multiplicative identity; a bijective algebra homomorphism is an R-algebra isomorphism.
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2.3 Chen’s Criticism

In a recent paper, Chen advocates for the thesis of algebraic relationalism, which calls

for “an algebraic implementation of relationalism”, i.e. an algebraic formalism for the

theory of space and time that is “not equivalent to substantivalism” (Chen, 2024, p2,

p22). To defend the potential of this thesis, Chen challenges the conventional wisdom.

She questions Rosenstock et al.’s inference from the categorical dualities they show to the

conventional wisdom6. Specifically, Chen is skeptical of Rosenstock et al. use of smooth

algebras as the basis of their discussion. Recall that in Definition 2, a smooth algebra is

an R-algebra that is complete, geometric, and smooth. Chen raises concerns for each of

the three requirements. For the geometricity, she claims that this requirement rules out

nilpotent algebras for no good reason other than that Rosenstock et al. want to establish

a categorical duality:

Why should we rule these out for algebraicism? No rationale is given by

the authors other than the apparent reason that without this condition, we

wouldn’t be able to recover standard manifolds through categorical duality.

(Chen, 2024, p10)

For the completeness, Chen argues that, to make sense of the idea of local equivalence of

maps, we have to treat a neighborhood of |A| as a set of points on |A| so that restrict-

ing an R-algebra homomorphism to a neighborhood makes sense. Hence she claims that

“to require algebras to be complete, we make reference to geometric objects, which sug-

gests this requirement as a disguised geometric discourse” (Chen, 2024, p10). Finally, for

smoothness, Chen states that geometric concepts are directly invoked as the smoothness

requirement is stated with topological vocabularies like open coverings. To sum up, Chen

believes that the smooth algebra formalism is not properly algebraic, for the reasons that

the only motivation to work with smooth algebras seems to be recovering the standard

manifold formalism and that parts of its definition invoke geometric concepts.

Chen is correct to point out that a crucial motivation behind the smooth algebra

formalism is to algebraically recover the standard manifold formalism, which is stated by

its creator as the algebraic approach to define smooth manifolds:

The two definitions of smooth manifold (in which the algebraic approach and

the coordinate approach result) are of course equivalent. . . . Essentially, this

book is a detailed exposition of these two approaches to the notion of smooth

manifold and their equivalence (Nestruev, 2003, p11)

6Chen also points to some philosophical shortcomings of the Einstein algebra formalism (Chen, 2024,
p11-13) and to the advantages of other potential algebraic formalisms for the theory of space and time, in
order to advocate for algebraic relationalism. These arguments are not a concern for the present paper,
as our focus is the Einstein algebra formalism itself.
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and recognized by Rosenstock et al. (2015). I also agree with Chen that smooth alge-

bras have more stringent requirements than Einstein rings do — this applies to not only

the geometricity but also the completeness and the smoothness. As stated before, it

is not hard to see that an Einstein ring is an R-algebra, but there is no indication in

Geroch’s original paper that Einstein rings must be geometric, complete, and smooth as

in Definition 2. Therefore, it is unclear whether the categorical duality between smooth

algebras and smooth manifolds shown in Theorem 1 is able to lead to any philosophical

conclusion about the Einstein algebra formalism. If Rosenstock et al. were to establish

a conventional wisdom concerning the smooth algebra formalism and relationalism, then

they would have succeeded with their duality theorem. But in that case, as Chen points

out, it would be redundant to do so, as smooth algebras are defined to be equivalent to

smooth manifolds in the first place. This casts a doubt on the philosophical significance

of Rosenstock et al.’s result, as it is unclear if Theorem 1 and its consequence imply

anything about the Einstein algebra formalism at all. Therefore, we cannot trust the

conventional wisdom anymore. The question “does the Einstein algebra formalism favor

relationalism?” requires a new structural comparison between Einstein rings and smooth

algebras in place of the categorical duality in Theorem 1.

As explained in the previous subsection, Rosenstock et al. (2015) apply the categor-

ical criterion of equivalence directly to investigate whether or not the Einstein algebra

formalism favors relationalism. While this approach is effective when a categorical equiv-

alence between two formalisms can be shown, it falls short otherwise. If two formalisms

are shown to posit the same mathematical structure, then one of them cannot favor an

ontology of space and time per its mathematical structure while the other does not. Nev-

ertheless, it is unclear whether theoretical equivalence is necessary for two formalisms to

favor the same ontology in the first place. Recall that relationalism is a more parsimo-

nious ontology than substantivalism. For an algebraic formalism to favor relationalism,

it therefore should be more mathematically parsimonious than the smooth manifold for-

malism in the way that corresponds to the way that relationalism is a more parsimonious

ontology than substantivalism. Call such an algebraic formalism “structurally relational-

ist”. Being “structurally relationalist” is a necessary condition for an algebraic formalism

to favor relationalism, as it formally tracks the parsimony aspect of relationalism. Instead

of using the categorical criterion of equivalence, this paper will propose a formal criterion

for the notion of “structural relationalist” and thus re-investigate whether the Einstein

algebra formalism favors relationalism. This will be the task of the next section.

Before moving on to reconsider the relationship between the Einstein algebra for-

malism and relationalism, I shall briefly address the rest of Chen’s criticism of smooth

algebras, i.e. her concerns about the presence of so-called “geometric discourse” and
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geometric concepts in the definition of smooth algebras. Chen believes that they make

smooth algebras not algebraic. It is not clear from her paper what definition of “algebraic-

ness” she might have in mind. However, regardless of what it may be, it is not compatible

with mathematical practice to regard any mathematical notion that involves concepts

and terminologies like “neighborhood of points” or “open coverings” as not algebraic.

To give a trivial example, we can always define a trivial topology on a given algebraic

structure, which would allow us to meaningfully talk about neighborhood of points and

open coverings. Numerous existing mathematical notions also deny the possibility of any

clean division of “algebraic” versus “not algebraic” that Chen might have in mind. A

C∗ algebras is a Banach space; Boolean algebras admit stone space representations; Lie

algebras are closely related to Lie groups and hence smooth manifolds. Therefore, even

though I agree with the first half of Chen’s criticism of smooth algebras being Rosenstock

et al. (2015)’s technical basis of the conventional wisdom, I do not share her opinion that

smooth algebras compromises on algebraic-ness.

3 Re-cast the Categorical Duality

In this section, I will reconsider the question “does the Einstein algebra formalism favor

relationalism?” by proposing a new formal criterion for investigating this question in place

of the categorical criterion of equivalence. I will start with illustrating and formalizing

the ideas behind Earman’s classic works of his program of Leibniz algebras, for it is the

first introduction of Einstein algebras to the substantivalism and relationalism debate.

The formalization results in the proposed formal criterion for an algebraic formalism

to be “structurally relationalist”. I will show that that, based on the new criterion, the

conventional wisdom that the Einstein algebra formalism does not favor relationalism still

holds, and the idea behind Rosenstock et al.’s categorical duality result can be preserved.

3.1 Einstein Algebras and the Program of Leibniz Algebras

In a series of publications, Earman (1977, 1979, 1986, 1989) introduces Einstein algebras

as he explicates Leibniz’ relational view on the spatio-temporal structure, which is ex-

trapolated from Leibniz’ writings on the nature of space and motion. Earman calls any

model of the spatio-temporal structure of the form ⟨M,O1, O2, · · · ⟩ a substantivalist world
model, where M is a smooth manifold and Oi, i ∈ N are geometric object fields on M .7

7The notation of a substantivalist world model varies in different pieces of Earman’s writings. Here
we follow (Earman, 1989, p171). He also calls certain substantivalist world models by certain names.
For example,Earman (1977) defines a Leibnizian pre-model, which consists of a so-called intermediate
Leibnizian space-time and a momentum field on the intermediate Leibnizian space-time (p100). The
precise definition of the intermediate Leibnizian space-time does not concern us here. What’s important
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Given two substantivalist world models ⟨M,O1, O2, · · · ⟩ and ⟨M ′, O′
1, O

′
2, · · · ⟩, if there is

a diffeomorphism φ : M → M ′ such that O′
i = φ∗(Oi), i ∈ N — in Earman’s words, φ∗

denotes “dragging along” by the mapping φ (Earman, 1979, p268) — a relationalist like

Leibniz must take the two substantivalist models as giving different descriptions of the

same physical reality, instead of different physical realities. After all, space-time points

are “descriptive fluff” (Earman, 1989, p170) for relationalists. In other words, one can

say that these substantivalist world models are Leibnizian equivalent, which consequently

gives rise to equivalence classes of substantivalist world models. According to Earman, an

equivalence class of substantivalist world models corresponds to a single physical reality

in the relationalist’s sense8. However, it is not sufficient for relationalists to stop there,

according to Earman. They need to complete an additional program, later called by Ry-

nasiewicz (1992) “the program of Leibniz algebras”, which consists of the following steps:

(1) give a direct characterization of the relationalist’s physical reality, i.e. the equivalence

classes of substantivalist world models, without referencing to smooth manifolds. Earman

(1977, 1979) calls such a direct characterization a Leibniz world model ; (2) show that the

laws of physics can be expressed directly in terms of Leibniz world models; (3) explain

how Leibniz-equivalent substantivalist world models arise as different but equivalent rep-

resentations of the same Leibniz world model; (4) show that the Leibniz world models

are not subject to the hole argument.9

The motivation for the first two steps can be attributed to the substantivalist interpre-

tation that Earman attaches to the standard manifold formalism and the Quine-Putnam

style indispensability argument for substantivalism. One notable Quine-Putnam style

indispensability argument is given by Hartry Field, who states that, since space-time

points seems indispensable to positing physical fields, relationalists have to come up a

different way of describing fields to avoid a realist’s commitment to space-time points.

We see from the following quote that Earman shares Field’s worry:

But drawing circles around groups of space-time models and labeling them

equivalence classes does not show that there is a viable alternative to sub-

stantivalism. To show that one would have to show how to do all the physics

we did before without treating the fields Oj as residing in M ; in effect, one

would have to show how to do differential geometry without the differential

manifold. (Earman, 1986, p237)

for the purpose of this paper is that it is formulated in the standard manifold formalism, hence a
substantivalist world model.

8See (Earman, 1977, p101), (Earman, 1979, p268), (Earman, 1986, p236-237), and (Earman, 1989,
p171).

9My presentations of the program of Leibniz algebras is a combination of what Earman writes in
(Earman, 1979) and (Earman, 1989). Step (4) is only explicit in (Earman, 1986, 1989), though a concern
about indeterminism is visible in (Earman, 1977). See (Weatherall, 2020) for details.
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But more importantly, it is also evident that Earman expects more from relationalists

than merely coming up with an alternative formalism for the theory of space and time

that is manifold-free. Immediately after the previous quote, he states the following:

one would need to show how the old space-time models can be regarded as

representations of the new models and prove that under the representation

relation a single new model corresponds precisely to an equivalence class of

old models. (Earman, 1986, p237)

That is to say, Leibnizian world models should correspond to Leibnizian-equivalent classes

of substantivalist world models in the sense that a representation relation10 between sub-

stantivalist world models and Leibniz world models should be defined, and that Leibniz-

equivalent substantivalist world models represent one and the same Leibniz world models.

This requires the step (3) of the program. In other words, Leibniz world models are ex-

pected to get rid of the “descriptive fluff” in the substantivalist world models, via the

“many-to-one” representation relation from substantivalist world models to Leibniz world

models.

Finally, Earman claims that “the desire for the possibility of determinism . . . provides

an independent motivation for a program like the above” (Earman, 1989, p172)11. The

worry that the standard manifold formalism and the substantivalist interpretation of it

imply the impossibility of determinism is most notably spelled out in (Earman & Norton,

1987), in the form of the hole argument. To briefly summarize, the hole argument is

based on the Hole Corollary that’s proven in the same paper, which states that given

a substantivalist world model ⟨M,O1, O2, · · · ⟩ and a neighborhood U ⊆ M , there exist

arbitrarily many ⟨M,O′
1, O

′
2, · · · ⟩’s which differ from ⟨M,O1, O2, · · · ⟩ only within U and

is identical to ⟨M,O1, O2, · · · ⟩ on the boundary and outside of U . The neighborhood U is

called a hole. If we place a hole U in the future of a time slice, then, for substantivalists,

all the history up to that time slice is unable to determine the future, as all substanti-

valist world models which only differ within U match the history up to the given time

slice. As Earman & Norton assume that distinct substantivalist world models represent

distinct substantivalist physical realities, they argue that substantivalists have to deny

any possibility of determinism for the theory of space and time12. The hole argument

leads Earman to believe that the standard manifold formalism for the theory of space and

time has excess structures and to suggest the Einstein algebra formalism as a suitable

10Earman also calls a realization relation in several other places.
11Similar remarks can be found in (Earman, 1977) and (Earman, 1986).
12The hole argument receives great attention in the subsequent philosophical literature, including

objections by Weatherall (2018) and Halvorson & Manchak (2024). This paper does not discuss the
validity of the hole argument. The purpose of presenting the hole argument here is to explain one
motivation Earman’s program of Leibniz algebras, for which it plays an important role (Weatherall,
2020, p81).
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modification of it, as (Weatherall, 2020, p86) points out. That is to say, Earman expects

a reletionalist’s formalism to get rid of the excess structures in substantivalist world mod-

els, which he believes are shown to exist by the hole argument. This is what step (4) is for.

To sum up, the program of Leibniz algebras aims to ward off the indispensability

argument and, more importantly, to get rid of excess structures in the standard mani-

fold formalism. More specifically, the reasons why Earman believes that there are excess

structures in the standard manifold formalism are that, first, relationalists should regard

Leibniz-equivalent substantivalist world models as mere different descriptions of the same

physical reality, and second, he believes that the standard manifold formalism is subject

to the hole argument. As a result, Leibniz algebras are expected to get rid of excess

structures by accomplishing step (3) and (4).

3.2 Formalizing the Program of Leibniz Algebras

In this subsection, I formalize the program of Leibniz algebras with category theory and

propose a formal criterion for determining “structurally relationalist” algebraic formalism

based on the formalization. I should make one caveat before proceeding. Earman does

not consider Leibniz/Einstein algebras to be fully relationalist. He argues that Leibniz

algebras do not escape the objection based on principle of sufficient reason (PSR), as

there is no reason why God would choose to actualize one Leibniz algebra instead of

another isomorphic but distinct Leibniz algebra (Earman, 1986, p239). For this reason,

he calls Leibniz algebras to be only “first-degree non-substantivalist” but substantivalist

at a deeper level. Can we still use the program of Leibniz algebras as a guide to formally

characterizing the notion of “structurally relationalist”?13 I say yes, for the following two

reasons. First, the reason why Earman claims that Leibniz algebras are substantivalist

at a deeper level is that they cannot bypass the PSR objection. This worry does not

concern the objective of this paper, which focuses on the ontological parsimony aspect

of relationalism. It is also a controversial whether the multiplicity of Leibniz algebras

should be a concern for the substantivalism versus relationalism controversy, as Weather-

all (2018) and Bradley & Weatherall (2022) argue that it is an unavoidable consequence

of constructing mathematical objects in set theory. Second, Earman also gives some pos-

itive remarks indicating that the mathematical structure of Leibniz algebras satisfies the

following two necessary conditions for a fully relationalist formalism:

Leibniz algebras provide a solution to the problem of characterizing the struc-

ture common to a Leibniz-equivalence class of substantival models and the

13I am grateful to an anonymous referee for raising this point.
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solutions eschews substantivalism in the form of space-time points (Earman,

1989, p192-193)

Therefore, even though Leibniz algebras are not considered to be a thoroughgoing re-

lationalist formalism, it is legitimate to take Earman’s ideas underlying the program of

Leibniz algebras for the purpose of characterizing “structurally relationalist” formalisms.

The program of Leibniz algebras concerns two kinds of world models: substantivalist

world models and Leibniz world models. Substantivalist world models are connected by

smooth maps that preserve geometric fields. Similarly, Leibniz world models are con-

nected by algebraic homomorphisms that preserve fields defined algebraically. Suppose

that we can describe the two kinds of world models by two categories — call them the

substantivalist category and the Leibniz category respectively. Since substantivalist world

models are expected to represent Leibniz world models, in the language of category the-

ory, we can think of the representation relation as a functor to be defined from the

substantivalist category to the Leibniz category. Call this the representation functor. If

the representation functor, appropriately defined, can show the ways in which Earman

expects Leibniz world models to get rid of the excess structures in substantivalist world

models, then we can say that the Leibniz world models, i.e. the Leibniz algebras, are

“structurally relationalist”.

Returning to smooth manifolds and Einstein rings, the category SmoothMan takes

the place of the substantivalist category here. For the algebraic side, we define the

category EinRings as follows:

• objects: Einstein rings E ,F , · · · , and
• arrows: Einstein ring homomorphisms h : E → F where E and F are Einstein

ringsn, and let RE be the subring of E that is isomorphic to R and RF be the

subring of F that is isomorphic to R, then h|E is a ring isomorphism from RE to

RF .

We denote a representation functor from SmoothMan to EinRings by R. Step (3) and

(4) of the program of Leibniz algebras can be interpreted as the following two expecta-

tions of the behavior of the representation functor R.

Therefore, in terms of SmoothMan and EinRings, diffeomorphic smooth manifolds

should be mapped by the representation functor R to one and the same Einstein ring.

Moreover, as a Leibniz algebra is expected by Earman to directly characterize what a

Leibniz-equivalent class of substantivalist world models represent, it should characterize

the mathematical structure that is shared by substantivalist world models in one Leibniz-

equivalence class. Hence a structure-preserving map defined between two Leibniz algebras

should be expected to preserve “less structure” than a structure-preserving map of sub-
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stantivalist world models does. As a result, for a morphism from one Leibniz algebra

to another Leibniz algebra, there might not be a corresponding morphism from the the

substantivalist world model that represents the first Leibniz algebra to the substantival-

ist world model that represents the second. Therefore, in terms of SmoothMan and

EinRing, we can interpret that the program of Leibniz algebras expects the representa-

tion functor R to be not full. Figure 1 illustrates this interpretation. Let diffeomorphic

M

E

M ′

N

F

N ′

φ

R

R(φ)

R

ψ

R

h

R(ψ)

R

Figure 1:

smooth manifolds M and M ′ be mapped by the representation functor R to Einstein

ring E , the diffeomoprhism φ : M → M ′ be mapped to R(φ) : E → E . Another pair

of diffeomorphic smooth manifolds N and N ′ are mapped by the representation functor

R to Einstein ring F , the diffeomorphism ψ : N → N ′ is mapped to R(ψ) : F → F .

Let h : F → E be an arrow in EinRings. Based on the interpretation, the program of

Leibniz algebras expects that there is not always a morphism fromM to N (or, similarly,

a morphism from M ′ to N ′) that is mapped to h by R. That is to say, the fullness of the

functor is not expected to hold.

As Earman believes that the hole argument is an important indicator that the substan-

tivalist world models have excess structures, the Einstein algebra formalism is expected

to get rid of the excess structures that lead to the hole argument. Step (4) of the pro-

gram of Leibniz algebras is stipulated for this purpose. Recall that, according to the hole

argument, the impossibility of determinism is a result of the existence of substantivalist

world models that are identical except within a neighborhood of the spacetime manifold

(the hole). These substantivalist world models have the same smooth manifold, and they

can be derived from one another with a diffeomorphism of the smooth manifold to itself

which leaves all the fields in the substantivalist world model unchanged except within the

hole. Call these diffeomorphisms the hole diffeomorphism14. As a relationalist formal-

14Recently, Halvorson & Manchak (2024) argue that no hole isomorphism exists if it is required to be
a isometry of relativistic spacetimes. Since this paper focuses on only the smooth manifold structure, we
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ism is expected by Earman to be not subject to the hole argument, we can understand

that as expecting no counterpart of hole diffeomorphisms for Einstein algebras to exist.

In terms of SmoothMan and EinRings, we can interpret this expectation to be that

the representation functor R would fail to be faithful. To illustrate, suppose that, as in

M F

idM

φ

R
idF

Figure 2:

Figure 2, a smooth manifold M is mapped to an Einstein ring F by the representation

functor R. Let φ : M → M be a hole diffeomorphism and idM be the identity arrow of

M . Since the program expects Einstein algebras to be free from the hole argument, the

hole diffeomorphism φ would not be mapped by R to an isomorphism of F that has the

potential to give rise to a hole argument on Einstein algebras. Instead, we expect φ to be

mapped to the identity arrow idF of F . In that case, R(idM) = idF = R(φ). Therefore,

the representation functor R would be not faithful.

The formalization in this subsection shows that, according to the program of Leibniz

algebras, the representation functor R from SmoothMan to EinRings has to fail to

be full and fail to be faithful for the Einstein algebra formalism to be “structurally rela-

tionalist”. This criterion can be applied to any other algebraic formalism by substituting

EinRings with the category of models of the algebraic formalism in consideration. This

criterion is in a sense stricter than simply requiring the two categories to be not dual

to each other, as it requires the duality to be spoiled specifically by the representation

functor being not full and not faithful. The requirement of essential surjectivity in the

categorical criterion of theoretical equivalence is therefore not relevant, according to the

program of Leibniz algebras. In the next section, I defend this claim independently of

the program of Leibniz algebras. For the rest of this section, we apply the new criterion

to SmoothMan and EinRings.

3.3 Re-cast the Duality

Now we are ready to answer the question this paper started with: ”foes the Einstein

algebra formalism favor relationalism?”? We adopt the formal criterion that the repre-

sentation functor R from SmoothMan to EinRings has to fail to be full and faithful

do not comment on the implications of Halvorson & Manchak (2024)’s result here.
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for a positive answer. We define the representation functor R from SmoothMan to

EinRings as follows:

• Given a smooth manifold M , R(M) = C∞(M).

• Given a smooth map φ : M → N from manifold M to manifold N , R(φ) = φ̂ :

C∞(N) → C∞(M) where φ̂(f) = f ◦ φ for all f ∈ C∞(N) is an Einstein ring

homomorphism15.

The justification of this definition is straightforward. A smooth manifold M must be

able to represent the Einstein ring C∞(M). The mapping of arrows also makes intuitive

sense. Then the following theorem is shown to be true:

Theorem 2. The representation functor R : SmoothMan → EinRings is full and

faithful.

Proof. To see that the representation functor R is faithful, let M and N be two smooth

manifolds and φ : M → N and ψ : M → N be smooth maps such that φ ̸= ψ.

Then there must be some p ∈ M such that φ(p) ̸= ψ(p). Since N is a Hausdorff

manifold, there is a smooth map f ∈ C∞(N) such that f(φ(p)) ̸= f(ψ(p)). Hence

R(φ)(f) = φ̂(f) ̸= ψ̂(f) = R(ψ)(f), which implies that R(φ) ̸= R(ψ).

To see that the representation functor F is full, letM and N be two smooth manifolds

and θ : C∞(N) → C∞(M) be an Einstein ring homomorphism. By (Nestruev, 2003,

Theorem7.7), there is an atlas that can be defined on |C∞(M)| such that |C∞(M)| is a
smooth manifold and C∞(|C∞(M)|) is isomorphic to C∞(M). Similarly, |C∞(N)| can be

endowed with a smoothness structure such that C∞(|C∞(N)|) is isomorphic to C∞(N).

Furthermore, there is a bijective homeomorphism between θM : M → |C∞(M)| defined
by

θM(p)(f) = f(p)

for all p ∈M and f ∈ C∞(M), given by (Nestruev, 2003, Theorem 7.2). By (Rosenstock

et al., 2015, Theorem 3.5). θM is a diffeomorphism. Similarly, there is a diffeomorphism

θN : N → |C∞(N)|. Define |θ| : |C∞(M)| → |C∞(N)| as follows:

|θ|(γ)(θN(k)) = θ(k)(θ−1
M (γ))

for all γ ∈ |C∞(M)| and k ∈ C∞(N). |θ| is a smooth map by the proof of (Rosenstock

et al., 2015, Lemma 3.4). Therefore, θ−1
N ◦ |θ| ◦ θM : M → N is a smooth map, i.e. an

arrow in SmoothMan. Finally, R(θ−1
N ◦ |θ| ◦ θM) = θ because

R(θ−1
N ◦ |θ| ◦ θM)(g)(p) = g(θ−1

N (|θ|(θM(p)))) = θ(g)(p)

15(Rosenstock et al., 2015, Lemma 3.3) shows that, given a smooth map φ : M → N , φ̂ : C∞(N) →
C∞(M) defined as φ̂(f) = f ◦ φ for all f ∈ C∞(N) is an R-algebra homomorphism. It is not hard to
see that φ̂ is also an Einstein ring homomorphism, as every Einstein ring is an R-algebra.
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for any g ∈ C∞(N), p ∈M .

Therefore, we conclude that the Einstein algebra formalism is not “structurally re-

lationalist” and therefore does not favor relationalism. Theorem 2 does not involve any

additional algebraic structure than the Einstein ring structure assumed in Geroch’s origi-

nal formulation of Einstein algebras. Hence it resolves Chen’s objection that the conven-

tional wisdom is supported by Rosenstock et al. (2015)’s duality theorem that involves

smooth algebras instead of the less stringent Einstein rings. We therefore re-affirm the

metaphysical status of the Einstein algebra formalism that Rosenstock et al. establish,

which is that it is as “relationalist”, and equivalently as “substantivalist”, as the standard

manifold formalism. The conventional wisdom established by Rosenstock et al. (2015) is

still true, though the technical result that supports it takes a different form.

Moreover, I note that the representation functor R is in fact almost the same as one

contravariant functor that Rosenstock et al. use to prove the duality of SmoothMan

and SmoothAlg (p312). Their duality theorem can therefore be re-stated as a corollary

of Theorem 2:

Corollary. The image of the representation functor R : SmoothMan → EinRings is

equivalent to SmoothAlg.

Proof. Since smooth algebras are Einstein rings and R-algebra homomorphisms are Ein-

stein ring homomorphisms, Theorem 2 shows that the image of the representation functor

R is a full and faithful sub-category of SmoothAlg, in the sense that the inclusion functor

from R[SmoothMan] to SmoothAlg which maps all objects and arrows to themselves

is full and faithful. To see the equivalence, we need to show that the inclusion func-

tor from R[SmoothMan] to SmoothAlg is essentially surjective. As pointed out by

(Nestruev, 2003, Theorem 7.7), for any smooth algebra A, there exists a smooth atlas

on its dual space |A| =: M such that A is isomorphic to C∞(M) as smooth algebras.

That is to say, for any object A of SmoothAlg, there must be some object R(M) of

R[SmoothMan] where M is an object of SmoothMan, such that A is isomorphic

to R(M) in SmoothAlg. Therefore, the inclusion functor from R[SmoothMan] to

SmoothAlg is essentially surjective.

The corollary shows that the fundamental insight of Rosenstock et al. (2015)’s du-

ality theorem is not as irrelevant to the Einstein algebra formalism as Chen’s objection

might have indicated. There are significant overlaps between the categorical criterion

of equivalence, which Rosenstock et al. work with, and the stricter criterion this paper

adopts to investigate the metaphysical stance of the Einstein algebra formalism. For one

contravariant functor they use to establish categorical duality between SmoothMan and

SmoothAlg is almost the same as the representation functor R, what Rosenstock et al.

show is effectively a part of the picture that this paper presents.
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4 The Irrelevance of Essential Surjectivity

We have given an answer to the question this paper started with. A crucial component of

it is the new formal criterion for an algebraic formalism to be “structurally relationalist”.

So far the only justification I have given for this formal criterion is the formalization of

Earman’s program of Leibniz algebras. In this section, I give another justification with

the example of Sikorski algebras and differential spaces. The example shows that an al-

gebraic formalism that spoils only the essential surjectivity of the representation functor

from SmoothMan to a category of its models does not move us closer to relational-

ism. This is because a failure of essential surjectivity has nothing to do with a failure

of geometric reconstruction. The irrelevance of essential surjectivity supports the new

formal criterion which requires only faithfulness and fullness of the representation functor.

To motivate the example, recall the categorical duality of SmoothMan and SmoothAlg.

We are interested in the following question: if an algebraic formalism breaks the duality

by only spoiling the essential surjectivity of the contravariant functor from SmoothMan

to SoomthAlg, will that make the algebraic formalism favor relationalism? We therefore

relax the smoothness condition of smooth algebras and consider a less stringently defined

algebraic structure, the Sikorski algebra, defined as follows:

Definition 3 (C∞-closure). A geometric R-algebra A is said to be C∞-closed if for any

finite collection of its elements f1, · · · , fk ∈ A and any g ∈ C∞(Rn) for some n, there

exists an element f ∈ A such that

f(a) = g ◦ (f1(a), · · · , fk(a)), for all a ∈ |A|.

Note that the function f ∈ A here is uniquely determined, since A is geometric. (Nestruev,

2003, p33)

Definition 4 (Sikorski algebras). We call an R-algebra A a Sikorski algebra if A is

geometric, complete, and C∞-closed.

We note that the Sikorski algebras bear great similarities to C∞-rings in the con-

temporary mathematics literature (for example, see (Joyce, 2012)). The rationale behind

naming this algebraic structure “Sikorski algebras” is that, as Gruszczak et al. (1988) and

Heller (1991) point out, Sikorski (1971) was the first who discussed this kind of algebraic

structure. To see that Sikorski algebras have weaker requirements than smooth algebras

do, we note the following facts:

Lemma 1. Every smooth algebra is a Sikorski algebra. (Nestruev, 2003, Proposition 4.4)

Lemma 2. Not every Sikorski algebra is a smooth algebra.
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Proof. The collection of all real-valued continuous functions on R, C0(R), is a Sikorski

algebra but not a smooth algebra.

We define the category SikorskiAlg as consisting of the following:

• objects: Sikorski algebras A,B, · · · , and
• arrows: R-algebra homomorphisms i : A → B where A and B are Sikorski algebras.

Similarly, we define a representation functor R′ from SmoothMan to SikorskiAlg,

based on how Rosenstock et al. (2015) define the contravariant functor from SmoothMan

to SmoothAlg (p312), as follows:

• Given a smooth manifold M , R′(M) = C∞(M).

• Given a smooth map φ : M → N from manifold M to manifold N , R(φ) =

φ̂ : C∞(N) → C∞(M) where φ̂(f) = f ◦ φ for all f ∈ C∞(N) is an R-algebra
homomorphism.

The representation functor R′ also bears a great similarity to the representation functor

R defined in the previous section. Moving from SmoothAlg to SikorskiAlg only spoils

the essential surjectivity, as shown by the following theorem:

Theorem 3. The representation functor R′ from SmoothMan to SikorskiAlg is faith-

ful and full, but not essentially surjective.

Proof. By Lemma 1, a similar reasoning to the proof of Theorem 2 shows that the rep-

resentation functor R′ is faithful and full. Lemma 2 implies that the functor R′ is not

essentially surjective, for the reasons that R-algebra isomorphisms, i.e. isomorphism ar-

rows in SikorskiAlg, preserve smoothness of R-algebras and that all objects in the range

of R′ are smooth algebras.

Theorem 3 shows that Sikorski algebras satisfy the antecedent of the question we are

investigating. In the rest of this section, I show that the Sikorski algebra formalism does

not favor relationalism, independent of the argument based on the program of Leibniz

algebras in section 3. To establish this conclusion, we first note that the categorical

duality of SmoothMan and SmoothAlg shows that the standard manifold formalism

and the smooth algebra formalism are structurally equivalent. Neither of them favors

relationalism more than the other formalism does, for the reason that:

Both encode precisely the same physical facts about the world, in somewhat

different languages. (Rosenstock et al., 2015, p315-316)

We follow this line of thought and show that Sikorski algebras encode precisely the same

physical facts about the world as a generalized geometric structure from smooth manifolds

— differential spaces (see Sikorski (1971), Heller (1992, 1991), and Gruszczak et al.

(1988)) — by establish a categorical duality. We introduce the following definitions

associated with differential spaces:
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Definition 5 (Differential spaces). LetM be a set and D be a collection of R-valued maps

on M . Let τD be the coarsest topology on M such that all functions in D are continuous

and that the following two hold:

1. if f : M → R is a map such that, for every p ∈ M , there is a neighborhood U of p

in the topological space (M, τD) and a map g ∈ D such that f |U = g|U , then f ∈ D.

2. for any n ∈ N and any function ω ∈ C∞(Rn), f1, · · · , fn ∈ D implies ω◦(f1, · · · , fn) ∈
D.

Then we say that D is a differential structure on M and that (M,D) is a differential

space. (Gruszczak et al., 1988, Definition 3.1-3.4)

Definition 6 (D-maps between differential spaces). Let (M,DM) and (N,DN) be dif-

ferential spaces. A map Φ : M → N is called a d-map from (M,DM) to (N,DN) if

h ◦ Φ ∈ DM , for every h ∈ DN .

Definition 7 (D-diffeomorphisms between differential spaces). Let (M,DM) and (N,DN)

be differential spaces. A bijective map Φ : M → N is called a d-diffeomorphism of

(M,DM) and (N,DN) if h ◦Φ ∈ DM and g ◦Φ−1 ∈ DN , for every h ∈ DN and g ∈ DM .

(Gruszczak et al., 1988, Definition 4.1)

According to Gruszczak et al. (1988) and Heller (1991), differential spaces are gener-

alizations of smooth manifolds. An additional condition can be imposed on differential

spaces to turn them into differential manifolds, which are equivalent to smooth mani-

folds defined in the standard way16. Generalizing from SmoothMan, we define a new

category D-Spaces as consisting of the following:

• objects: differential spaces (M,DM), (N,DN), · · · , and
• arrows: d-maps Φ :M → N where (M,DM) and (N,DN) are differential spaces.

Finally, we show that Sikorski algebras and differential spaces have the same mathematical

structure by establishing the following categorical duality:

Theorem 4. SikorskiAlg is dual to D-Spaces.

Proof. Define a contravariant functor G : SikorskiAlg → D-Spaces as follows:

• For each object A, G(A) = (|A|,A).

• For each arrow i : A → B between Sikorski algebras A and B, G(i) : |B| → |A| is
defined as G(i)(p)(x) := i(x)(p), for all p ∈ |B|, x ∈ A.

We show that the functor G is well-defined. First, it is not hard to see that G(A) is a

differential space, since A is a complete and C∞-closed R-algebra. Secondly, we show

that, for each R-algebra homomorphism i : A → B between Sikorski algebras A and B,
G(i) : |B| → |A| defined as above is a d-map. For any element x of A, we need to show

16For a technical explanation of this equivalence, see (Gruszczak et al., 1988, section 4).
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that x ◦G(i) : |B| → R is a continuous map. Since a composition of continuous maps is

continuous, it is sufficient to show that G(i) is a continuous map from |B| to |A|. To see

that, note that for every U ⊆ G(i)[|B|] such that U = x−1(UR) for some x ∈ A, UR an

open set in R, i.e. U is open given the subspace topology of τA on G(i)[|B|], we have

[G(i)]−1[U ] = [i(x)]−1[UR],

which is an open set in |B| given τB. This is because that [G(i)]−1[U ] = {p ∈ |B| :

G(i)(p)(x) ∈ U} = {p ∈ |B| : i(x)(p) ∈ UR} and i(x) ∈ B by definition. Therefore G(i)

is continuous. Therefore, G(i) defined as above is a d-map between |B| and |A|. The

contravariant functor G : SikorskiAlg → D-Spaces is well-defined.

Define a contravariant functor H : D-Spaces → SikorskiAlg as follows:

• For each object (M,DM) in D-Spaces, H((M,DM)) = DM .

• For each arrow Φ : M → N , i.e. a d-map between (M,DM) and (N,DN), H(Φ) :

DN → DM is defined by H(Φ)(k) = k ◦ Φ for any k ∈ DN .

To see thatH is a well-defined contravariant functor, first note that for a differential space

(M,DM), there is a one-to-one correspondence between M and |DM |, characterized by

the map ηM :M → |DM | defined as follows:

ηM(p)(f) = f(p)

for all p ∈M , f ∈ DM . Therefore, if (M,DM) is a differential space, then DM is a Siko-

rski algebra, by definition. Next, it is not hard to see that, for each arrow Φ : M → N ,

H(Φ) : DN → DM is defined by H(Φ)(k) = k ◦ Φ for any k ∈ DN is an R-algebra
homomorphism, for it preserves the vector space operations, the product, and the multi-

plicative identity. Therefore, H is a well-defined contravariant functor.

Now we show that GH : D-Spaces → D-Spaces is naturally isomorphic to 1D-Spaces.

We define a family of maps associated withGH, between objects (M,DM) andGH((M,DM)) =

(|DM |, DM) in D-Spaces, as follows:

ηM :M → |DM | s.t. ηM(p)(f) = f(p)

for all p ∈ M , f ∈ DM . That ηM is a d-diffeomorphism follows from the fact that the

two differential spaces have the same differential structure and that it is surjective by

definition. Therefore, GH is naturally isomorphic to 1D-Spaces. One the other hand, we

can see that HG : SikorskiAlg → SikorskiAlg is the same as 1SikorskiAlg by definition

of G and H. Therefore, D-Spaces is dual to SikorskiAlg.
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As Sikorski algebras and differential spaces have the same mathematical structure, to

say that the mathematical structure of Sikorski algebras favors relationalism is equiva-

lent to saying that the mathematical structure of differential spaces favors relationalism.

Nevertheless, it doesn’t make sense to say that the differential space formalism makes a

weaker ontological commitment regarding the independent existence of space and time

than the standard manifold formalism. If the standard manifold formalism is consid-

ered to represent space and time with its mathematical structure, then the differential

space formalism merely disagrees with it about what mathematical structure represents

space and time. As differential spaces are generalizations of smooth manifolds, from a

substantivalist’s perspective, the differential space formalism simply stipulates a different

fundamental spatio-temporal structure than the fundamental spatio-temporal structure

that the standard manifold formalism stipulates. The structural equivalence of Sikorski

algebras and differential spaces therefore leads to the conclusion that the Sikorski alge-

bra formalism does not favor relationalism. If anything, the Sikorski algebra formalism,

and equivalently the differential space formalism, just provides a different substantival-

ist picture of space and time from the one that the standard manifold formalism provides.

To sum up, the example of Sikorski algebras shows that the essential surjectivity of the

representation functor is not relevant to the question of whether an algebraic formalism

is “structurally relationalist”. It is because that, despite that the representation functor

R′ from SmoothMan to SikorskiAlg is not essentially surjective, Sikorski algebras

cannot be reasonably viewed to favor relationalism due to the theoretical equivalence

between Sikorski algebras and differential spaces. This example justifies the proposed

formal criterion which states that an algebraic formalism for the theory of space and

time is “structurally relationalist” if the appropriately defined representation functor from

SmoothMan to the category of algebraic models fails to be faithful and full, regardless

of whether it is essentially surjective or not.

5 Conclusion

To conclude, this paper begins with presenting Rosenstock et al. (2015)’s duality theo-

rem and the conventional wisdom stating that the Einstein algebra formalism does not

favor relationalism. Then I presented Chen (2024)’s recent objection to the conventional

wisdom. Motivated by Chen’s objection, I re-visited Earman’s classic works on the pro-

gram of Leibniz algebras and proposed a formal criterion for determining whether an

algebraic formalism is “structurally relationalist”, which is a necessary condition for it

to favor relationalism. Based on this criterion, I showed that the conventional wisdom is

still true, though supported by a different technical result. Finally, I provided another

justification of the proposed criterion, which provided additional support to re-affirming

22



the conventional wisdom.
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