Upcoming talks

9 December 2023

Jeffrey Barrett (UCI) and Eddy Chen (UCSD), “Algorithmic Randomness and Probabilistic Laws

Abstract: We consider two ways one might use algorithmic randomness to characterize a probabilistic law. The first is a generative chance* law. Such laws involve a nonstandard notion of chance. The second is a probabilistic* constraining law. Such laws impose relative frequency and randomness constraints that every physically possible world must satisfy. While each notion has virtues, we argue that the latter has advantages over the former. It supports a unified governing account of non-Humean laws and provides independently motivated solutions to issues in the Humean best-system account. On both notions, we have a much tighter connection between probabilistic laws and their corresponding sets of possible worlds. Certain histories permitted by traditional probabilistic laws are ruled out as physically impossible. As a result, such laws avoid one variety of empirical underdetermination, but the approach reveals other varieties of underdetermination that are typically overlooked. 

A preprint is available: https://arxiv.org/pdf/2303.01411.pdf

Past Events

27-28 October 2023

Event: Symmetry and Structure Workshop
Register by October 20: https://forms.gle/r8pMXxWXALQ3MNZs8

3-4 November 2023

Event: Conceptual and Mathematical Foundations of Science
Register by October 27: https://forms.gle/9FQ2YytDRWfu7Pg87